-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
62 lines (56 loc) · 3.02 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from torch import nn
from collections import OrderedDict
import torch
import torchvision
import argparse
def make_layers(block):
layers = []
for layer_name, v in block.items():
if 'pool' in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
elif 'deconv' in layer_name:
transposeConv2d = nn.ConvTranspose2d(in_channels=v[0],
out_channels=v[1],
kernel_size=v[2],
stride=v[3],
padding=v[4])
layers.append((layer_name, transposeConv2d))
if 'relu' in layer_name:
layers.append(('relu_' + layer_name, nn.ReLU(inplace=True)))
elif 'leaky' in layer_name:
layers.append(('leaky_' + layer_name,
nn.LeakyReLU(negative_slope=0.2, inplace=True)))
elif 'conv' in layer_name:
conv2d = nn.Conv2d(in_channels=v[0],
out_channels=v[1],
kernel_size=v[2],
stride=v[3],
padding=v[4])
layers.append((layer_name, conv2d))
if 'relu' in layer_name:
layers.append(('relu_' + layer_name, nn.ReLU(inplace=True)))
elif 'leaky' in layer_name:
layers.append(('leaky_' + layer_name,
nn.LeakyReLU(negative_slope=0.2, inplace=True)))
else:
raise NotImplementedError
return nn.Sequential(OrderedDict(layers))
def create_video(x, y_hat, y):#x=input_first 10 frames,y_hat=x.predict, y= input-later 10 frames(ground truth)
# predictions with input for illustration purposes
preds = torch.cat([x, y_hat], dim=1)[0] #BS1HW TO S1WH. First row: input+output
# entire input and ground truth
y_plot = torch.cat([x, y], dim=1)[0] #同上 S1WH
# error (l2 norm) plot between pred and ground truth
difference = (torch.pow(y_hat[0].squeeze() - y[0].squeeze(), 3)).detach() #How to change from Y_hat BS1HW to SHW?: [0] make S1HW,
zeros = torch.zeros(difference.shape).cuda()
difference_plot = torch.cat([zeros.unsqueeze(0), difference.unsqueeze(0)], dim=1)[0].unsqueeze(1)
#difference plot's shape become S 1 H W <--[Step.unsqueeze(1)] S H W <--[Step.[0]] 1 S H W <--[Step.cat.dim 1] 1 S/2 H W <--[Step.unsqueeze(0)] S/2 H W
#Thus zero=3D tensor SHW
# concat all images
final_image = torch.cat([preds, y_plot, difference_plot], dim=0)
#final iamge shape is 3*S 1 HW
# make them into a single grid image file
grid = torchvision.utils.make_grid(final_image, nrow=14)
#make_grid的作用是将若干幅图像拼成一幅图像。其中padding的作用就是子图像与子图像之间的pad有多宽
return grid