forked from cedille/ial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkripke-semantics.agda
218 lines (177 loc) · 6.86 KB
/
kripke-semantics.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
module kripke-semantics where
open import level
open import bool
open import closures
open import empty
open import eq
open import level
open import list
open import list-thms
open import nat
open import product
open import relations
open import string
open import sum
open import unit
data formula : Set where
$ : string → formula
True : formula
Implies : formula → formula → formula
And : formula → formula → formula
ctxt : Set
ctxt = 𝕃 formula
data _⊢_ : ctxt → formula → Set where
Assume : ∀{Γ f} → (f :: Γ) ⊢ f
Weaken : ∀{Γ f f'} → Γ ⊢ f → (f' :: Γ) ⊢ f
ImpliesI : ∀{f1 f2 Γ} → (f1 :: Γ) ⊢ f2 → Γ ⊢ (Implies f1 f2)
ImpliesE : ∀{f1 f2 Γ} → Γ ⊢ (Implies f1 f2) → Γ ⊢ f1 → Γ ⊢ f2
TrueI : ∀ {Γ} → Γ ⊢ True
AndI : ∀{f1 f2 Γ} → Γ ⊢ f1 → Γ ⊢ f2 → Γ ⊢ (And f1 f2)
AndE : ∀(b : 𝔹){f1 f2 Γ} → Γ ⊢ (And f1 f2) → Γ ⊢ (if b then f1 else f2)
sample-pf : [] ⊢ Implies ($ "p") (And ($ "p") ($ "p"))
sample-pf = ImpliesI{$ "p"} (AndI (Assume{[]}) (Assume))
record struct : Set1 where
field W : Set -- a set of worlds
R : W → W → Set
preorderR : preorder R -- a proof that R is a preorder (reflexive and transitive)
V : W → string → Set -- a valuation telling whether atomic formula i is true or false in a given world
monoV : ∀ { w w' } → R w w' → ∀ { i } → V w i → V w' i
reflR : reflexive R
reflR = fst preorderR
transR : transitive R
transR = snd preorderR
open struct
_,_⊨_ : ∀(k : struct) → W k → formula → Set
k , w ⊨ ($ x) = V k w x
k , w ⊨ True = ⊤
k , w ⊨ Implies f1 f2 = ∀ {w' : W k} → R k w w' → k , w' ⊨ f1 → k , w' ⊨ f2
k , w ⊨ And f1 f2 = k , w ⊨ f1 ∧ k , w ⊨ f2
module ⊨-example where
data world : Set where
w0 : world
w1 : world
w2 : world
data rel : world → world → Set where
r00 : rel w0 w0
r11 : rel w1 w1
r22 : rel w2 w2
r01 : rel w0 w1
r02 : rel w0 w2
rel-refl : reflexive rel
rel-refl {w0} = r00
rel-refl {w1} = r11
rel-refl {w2} = r22
rel-trans : transitive rel
rel-trans r00 r00 = r00
rel-trans r00 r01 = r01
rel-trans r00 r02 = r02
rel-trans r11 r11 = r11
rel-trans r22 r22 = r22
rel-trans r01 r11 = r01
rel-trans r02 r22 = r02
data val : world → string → Set where
v1p : val w1 "p"
v1q : val w1 "q"
v2p : val w2 "p"
v2q : val w2 "q"
mono-val : ∀{w w'} → rel w w' → ∀ { i } → val w i → val w' i
mono-val r00 p = p
mono-val r11 p = p
mono-val r22 p = p
mono-val r01 ()
mono-val r02 ()
k : struct
k = record { W = world ; R = rel ; preorderR = (rel-refl , rel-trans) ; V = val ; monoV = mono-val }
test-sem : Set
test-sem = k , w0 ⊨ Implies ($ "p") ($ "q")
pf-test-sem : k , w0 ⊨ Implies ($ "p") ($ "q")
pf-test-sem r00 ()
pf-test-sem r01 p = v1q
pf-test-sem r02 p = v2q
mono⊨ : ∀{k : struct}{w1 w2 : W k}{f : formula} →
R k w1 w2 →
k , w1 ⊨ f →
k , w2 ⊨ f
mono⊨{k} {f = $ x} r p = monoV k r p
mono⊨{k} {f = True} r p = triv
mono⊨{k} {f = Implies f1 f2} r p r' p' = p (transR k r r') p'
mono⊨{k} {f = And f1 f2} r (p1 , p2) = mono⊨{f = f1} r p1 , mono⊨{f = f2} r p2
_,_⊨ctxt_ : ∀(k : struct) → W k → ctxt → Set
k , w ⊨ctxt [] = ⊤
k , w ⊨ctxt (f :: Γ) = (k , w ⊨ f) ∧ (k , w ⊨ctxt Γ)
mono⊨ctxt : ∀{k : struct}{Γ : ctxt}{w1 w2 : W k} →
R k w1 w2 →
k , w1 ⊨ctxt Γ →
k , w2 ⊨ctxt Γ
mono⊨ctxt{k}{[]} _ _ = triv
mono⊨ctxt{k}{f :: Γ} r (u , v) = mono⊨{k}{f = f} r u , mono⊨ctxt{k}{Γ} r v
_⊩_ : ctxt → formula → Set1
Γ ⊩ f = ∀{k : struct}{w : W k} → k , w ⊨ctxt Γ → k , w ⊨ f
Soundness : ∀{Γ : ctxt}{f : formula} → Γ ⊢ f → Γ ⊩ f
Soundness Assume g = fst g
Soundness (Weaken p) g = Soundness p (snd g)
Soundness (ImpliesI p) g r u' = Soundness p (u' , mono⊨ctxt r g)
Soundness (ImpliesE p p') {k} g = (Soundness p g) (reflR k) (Soundness p' g)
Soundness TrueI g = triv
Soundness (AndI p p') g = (Soundness p g , Soundness p' g)
Soundness (AndE tt p) g = fst (Soundness p g)
Soundness (AndE ff p) g = snd (Soundness p g)
data _≼_ : 𝕃 formula → 𝕃 formula → Set where
≼-refl : ∀ {Γ} → Γ ≼ Γ
≼-cons : ∀ {Γ Γ' f} → Γ ≼ Γ' → Γ ≼ (f :: Γ')
≼-trans : ∀ {Γ Γ' Γ''} → Γ ≼ Γ' → Γ' ≼ Γ'' → Γ ≼ Γ''
≼-trans u ≼-refl = u
≼-trans u (≼-cons u') = ≼-cons (≼-trans u u')
Weaken≼ : ∀ {Γ Γ'}{f : formula} → Γ ≼ Γ' → Γ ⊢ f → Γ' ⊢ f
Weaken≼ ≼-refl p = p
Weaken≼ (≼-cons d) p = Weaken (Weaken≼ d p)
U : struct
U = record { W = ctxt ;
R = _≼_ ;
preorderR = ≼-refl , ≼-trans ;
V = λ Γ n → Γ ⊢ $ n ;
monoV = λ d p → Weaken≼ d p }
CompletenessU : ∀{f : formula}{Γ : W U} → U , Γ ⊨ f → Γ ⊢ f
SoundnessU : ∀{f : formula}{Γ : W U} → Γ ⊢ f → U , Γ ⊨ f
CompletenessU {$ x} u = u
CompletenessU {True} u = TrueI
CompletenessU {And f f'} u = AndI (CompletenessU{f} (fst u)) (CompletenessU{f'} (snd u))
CompletenessU {Implies f f'}{Γ} u =
ImpliesI
(CompletenessU {f'}
(u (≼-cons ≼-refl) (SoundnessU {f} (Assume {Γ}))))
SoundnessU {$ x} p = p
SoundnessU {True} p = triv
SoundnessU {And f f'} p = SoundnessU{f} (AndE tt p) , SoundnessU{f'} (AndE ff p)
SoundnessU {Implies f f'} p r u = SoundnessU (ImpliesE (Weaken≼ r p) (CompletenessU {f} u))
ctxt-id : ∀{Γ : ctxt} → U , Γ ⊨ctxt Γ
ctxt-id{[]} = triv
ctxt-id{f :: Γ} = SoundnessU{f} Assume , mono⊨ctxt (≼-cons ≼-refl) (ctxt-id {Γ})
Completeness : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → Γ ⊢ f
Completeness{Γ} p = CompletenessU (p{U}{Γ} (ctxt-id{Γ}))
Universality1 : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → U , Γ ⊨ f
Universality1{Γ}{f} p = SoundnessU (Completeness{Γ}{f} p)
Universality2 : ∀{Γ : ctxt}{f : formula} → U , Γ ⊨ f → Γ ⊩ f
Universality2{Γ}{f} p = Soundness (CompletenessU{f}{Γ} p)
nbe : ∀ {Γ f} → Γ ⊢ f → Γ ⊢ f
nbe {Γ} p = Completeness (Soundness p)
module tests where
-- here we see several proofs which normalize to just TrueI using the nbe function
a : [] ⊢ True
a = AndE tt (AndI TrueI TrueI)
a' = nbe a
b : [] ⊢ True
b = ImpliesE (ImpliesE (ImpliesI (ImpliesI (Assume))) TrueI) TrueI
b' = nbe b
c : [] ⊢ (Implies ($ "p") ($ "p"))
c = ImpliesI (ImpliesE (ImpliesI Assume) Assume)
c' = nbe c
d : [ $ "q" ] ⊢ (Implies ($ "p") ($ "q"))
d = ImpliesI (ImpliesE (ImpliesI (Weaken (Weaken Assume))) Assume)
d' = nbe d
e : [] ⊢ (Implies (And ($ "p") ($ "q")) (And ($ "p") ($ "q")))
e = ImpliesI Assume
e' = nbe e
f : [] ⊢ (Implies (Implies ($ "p") ($ "q")) (Implies ($ "p") ($ "q")))
f = ImpliesI Assume
f' = nbe f