forked from cedille/ial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum.agda
67 lines (47 loc) · 2.85 KB
/
sum.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
module sum where
open import level
open import bool
open import eq
open import maybe
open import product
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data _⊎_ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') : Set (ℓ ⊔ ℓ') where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
_∨_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
_∨_ = _⊎_
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixr 0 _⊎_ _∨_
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
_≫=⊎_ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{C : Set (ℓ ⊔ ℓ')} → A ⊎ B → (B → A ⊎ C) → A ⊎ C
inj₁ x ≫=⊎ f = inj₁ x
inj₂ x ≫=⊎ f = f x
return⊎ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → B → A ⊎ B
return⊎ b = inj₂ b
infix 5 error⊎_
error⊎_ : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → A → A ⊎ B
error⊎_ a = inj₁ a
extract-inj₁≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'}{a a' : A} → inj₁{B = B} a ≡ inj₁ a' → a ≡ a'
extract-inj₁≡ refl = refl
extract-inj₂≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'}{b b' : B} → inj₂{A = A} b ≡ inj₂ b' → b ≡ b'
extract-inj₂≡ refl = refl
=⊎ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (A → A → 𝔹) → (B → B → 𝔹) → A ⊎ B → A ⊎ B → 𝔹
=⊎ eqa eqb (inj₁ a) (inj₁ a') = eqa a a'
=⊎ eqa eqb (inj₂ b) (inj₂ b') = eqb b b'
=⊎ _ _ _ _ = ff
=⊎-to-≡ : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (_eqa_ : A → A → 𝔹) → (_eqb_ : B → B → 𝔹) → ((a a' : A) → (a eqa a' ≡ tt) → a ≡ a') → ((b b' : B) → (b eqb b' ≡ tt) → b ≡ b') → (x y : A ⊎ B) → =⊎ _eqa_ _eqb_ x y ≡ tt → x ≡ y
=⊎-to-≡ eqa eqb risea riseb (inj₁ a) (inj₁ a') p rewrite risea a a' p = refl
=⊎-to-≡ eqa eqb risea riseb (inj₂ b) (inj₂ b') p rewrite riseb b b' p = refl
=⊎-to-≡ eqa eqb risea riseb (inj₁ a) (inj₂ b) ()
=⊎-to-≡ eqa eqb risea riseb (inj₂ b) (inj₁ a) ()
≡⊎-to-= : ∀{ℓ}{ℓ'}{A : Set ℓ}{B : Set ℓ'} → (_eqa_ : A → A → 𝔹) → (_eqb_ : B → B → 𝔹) → ((a a' : A) → a ≡ a' → a eqa a' ≡ tt) → ((b b' : B) → b ≡ b' → b eqb b' ≡ tt) → (x y : A ⊎ B) → x ≡ y → =⊎ _eqa_ _eqb_ x y ≡ tt
≡⊎-to-= eqa eqb dropa dropb (inj₁ a) (inj₁ a') p = dropa a a' (extract-inj₁≡ p)
≡⊎-to-= eqa eqb dropa dropb (inj₂ b) (inj₂ b') p = dropb b b' (extract-inj₂≡ p)
≡⊎-to-= eqa eqb dropa dropb (inj₁ a) (inj₂ b) ()
≡⊎-to-= eqa eqb dropa dropb (inj₂ b) (inj₁ a) ()