Skip to content

Latest commit

 

History

History
208 lines (143 loc) · 7.53 KB

hbase.md

File metadata and controls

208 lines (143 loc) · 7.53 KB

HBASE API

Note

Limitations

  • Read/Write API : Doesn't support multi-column ROWKEY
  • Read/Write API : Performance is bounded on how HBase table is created

Design Considerations

Following are the advantages of using SHC

  • This provides support for spark hbase integration on Dataframe and Dataset level
  • BulkLoad not supported yet
  • Writes are converted to HBase Puts and for each partition Puts are executed code
  • shc-github

Following are the limitations if one writes own write implementations via JAVA Client for HBASE

  • Only updates on single or very few rows should be performed using this
  • If we use this option, we have to sequentially run all the puts in driver which takes a lot of time even for small amount of data (>40,000)
  • As Put Object is not Serializable, we have to serialize it first and then call it for each partition but all this is done by hortonworks in their Spark HBase Connector (SHC)

Create Hive Table pointing to HBase table

The following hive table points to a hbase table named adp_bdpe:test_emp with column families personal and professional

CREATE EXTERNAL TABLE IF NOT EXISTS `default.hbase_emp`(
  `id` string,
  `name` string,
  `address` string,
  `age` string ,
  `company` string ,
  `designation` string ,
  `salary` string
  )
ROW FORMAT SERDE
  'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (
  'hbase.columns.mapping'=':key,personal:name,personal:address,personal:age,professional:company,professional:designation,professional:salary',
  'serialization.format'='1')
TBLPROPERTIES (
  'gimel.hbase.table.name'='adp_bdpe:test_emp',
  "gimel.hbase.namespace.name"="adp_bdpe",
  'gimel.storage.type'='HBASE'
  )

Catalog Properties

Property Mandatory? Description Example Default
gimel.hbase.table.name Y HBASE Table Name test
gimel.hbase.namespace.name Y HBASE Name Space default default
hbase.columns.mapping Y Key Space in Cassandra :key,cols:column2,cols:column3 while writes, this is taken implicitly from DataFrame
hbase.rowkey Y Mandataory only for write API id
hbase.columns.specified.flag N
Used for Write API only
true - Write only columns specified in hbase.columns.mapping option
false - Write all columns in dataframe
true/false false

Common Imports in all Hbase API Usages

import org.apache.spark.sql._
import org.apache.spark._
import org.apache.spark.rdd._
import com.paypal.gimel._
import spray.json.DefaultJsonProtocol._;
import spray.json._;

HBASE Write API Puts

Prepare Test Data for write

def stringed(n: Int) = s"""{"id": ${n},"name": "MAC-${n}", "address": "MAC-${n+1}", "age": "${n+1}", "company": "MAC-${n}", "designation": "MAC-${n}", "salary": "${n * 10000}" }"""
val numberOfRows=10000
val texts: Seq[String] = (1 to numberOfRows).map { x => stringed(x) }.toSeq
val rdd: RDD[String] = hiveContext.sparkContext.parallelize(texts)
val dataFrameToWrite: DataFrame = hiveContext.read.json(rdd)
dataFrameToWrite.show

Write all columns

//Write all columns(also present in ddl) in Dataframe to HBase table

val dataSet: DataSet = DataSet(sparkSession)
val options: Map[String,Any] = Map("gimel.hbase.rowkey"->"id")
val dataFrameWritten = dataSet.write("default.hbase_emp",dataFrameToWrite,options)

Write new columns

//Write new columns(not in ddl) along with other columns in dataframe to HBase table

val options: Map[String,Any] = Map("gimel.hbase.rowkey"->"id","gimel.hbase.columns.mapping"->"personal:dob")
val dataFrameWritten = dataSet.write("default.hbase_emp",dataFrameToWrite,options)

Write specific columns

//Write specific columns (given in input option hbase.columns.mapping by user) only to HBase table

val options: Map[String,Any] = Map("gimel.hbase.rowkey"->"id","gimel.hbase.columns.mapping"->"personal:dob", "gimel.hbase.columns.specified.flag"-> true)
val dataFrameWritten = dataSet.write("default.hbase_emp",dataFrameToWrite,options)

HBase Read API Scan

Read all columns

//Read all columns from HBase table

val dataFrameRead = dataSet.read("default.hbase_emp")
dataFrameRead.show

Read specific columns

//Read specific columns(given in input option hbase.columns.mapping by user) from HBase table

val options: Map[String,Any] = Map("gimel.hbase.rowkey"->"id","gimel.hbase.columns.mapping"->"personal:name,professional:salary")
val dataFrameRead = dataSet.read("default.hbase_emp", options)
dataFrameRead.show

HBase Read API Lookup

Lookup by rowKey

//Get all columns of all column families in a row
val options: Map[String,Any] = Map("gimel.hbase.operation"->"get","gimel.hbase.get.filter"->"rowKey=1")
val dataFrameRead = dataSet.read("default.hbase_emp",options)
dataFrameRead.show

Lookup by rowKey and ColumnFamily

//Get all columns in a column family
val options: Map[String,Any] = Map("gimel.hbase.operation"->"get","gimel.hbase.get.filter"->"rowKey=1:toGet=personal")
val dataFrameRead = dataSet.read("default.hbase_emp",options)
dataFrameRead.show

Lookup by rowKey ColumnFamily and Column

//Get particular cells
val options: Map[String,Any] = Map("gimel.hbase.operation"->"get","gimel.hbase.get.filter"->"rowKey=1:toGet=personal-name,address|professional-company")
val dataFrameRead = dataSet.read("default.hbase_emp",options)
dataFrameRead.show