Skip to content

Latest commit

 

History

History
406 lines (329 loc) · 17.1 KB

kafka.md

File metadata and controls

406 lines (329 loc) · 17.1 KB

KAFKA API

Note

Format Support Differentiating Property
AVRO Supports READ + WRITE 'gimel.kafka.avro.schema.string'=''
STRING Supports READ + WRITE 'gimel.kafka.message.value.type'='string'
JSON Supports READ + WRITE 'gimel.kafka.message.value.type'='json'
BINARY Supports READ + WRITE 'gimel.kafka.message.value.type'='binary'

Limitations

  • Current implementation does not support batch read / stream from multiple topics.
  • Until SPARK-23636 is resolved - we may have to use num-cores=1 while doing batch fetch from kafka . Proposed Solution --> apache/spark#20767

Batch & Streaming Features

Checkpointing

  • Save The CheckPoint States in Supplied or a Default ZooKeeper.
  • Clear the CheckPoint and start over from the beginning via function calls.

Throttling

  • Advanced parameters to consume data from Kafka via Parallelism (Batch only)
  • Horizontal Scaling for tasks/executors
  • Control Number of messages per executor (Batch only)
  • Ability to Control the Number of rows/messages to fetch from kafka in each run. (Batch only)

Batch & Streaming SQL on Kafka with checkpointing & throttling capabilities

  • Express your entire logic in SQL that can combine various datasets from storages such as Hive, HDFS, ES, Kafka
  • Explore Data by "select statements"
  • Insert Data into Targets by "insert statements" --> On Successful Insert : Consumer's Kafka States are Saved Implicitly in CheckPoint Nodes in Zookeeper

Catalog Properties

Property Mandatory? Description Example Default
gimel.kafka.bootstrap.servers Y the broker list for kafka host1:9092,host2:9092
gimel.kafka.kafka.whitelist.topics Y the topic name in kafka flights
key.serializer Y the kafka key serializer org.apache.kafka.common.serialization.StringSerializer
value.serializer Y the kafka message serializer org.apache.kafka.common.serialization.StringSerializer org.apache.kafka.common.serialization.ByteArraySerializer
key.deserializer Y the kafka key DeSerializer org.apache.kafka.common.serialization.StringDeserializer
value.deserializer Y the kafka message DeSerializer org.apache.kafka.common.serialization.StringDeserializer org.apache.kafka.common.serialization.ByteArrayDeserializer
zookeeper.connection.timeout.ms Y ZooKeeper Time out Millisec 10000
group.id N
If specified, all readers of this topic will go under same consumer group
Thus, only as many consumers as # of partitions can read from this dataset concurrently
assigned random number at runtime
gimel.kafka.avro.schema.source Y
INLINE - indicates avro schema is supplied via gimel.kafka.avro.schema.string
CDH - picks up schema from confluent schema registry based on gimel.kafka.avro.schema.source.url
gimel.kafka.avro.schema.string N This is a Must if gimel.kafka.avro.schema.source=INLINE Refer Examples below for Avro Data
gimel.kafka.avro.schema.source.url N This is a Must if gimel.kafka.avro.schema.source=CDH Refer Examples below for CDH Data
gimel.kafka.avro.schema.source.key N This is a Must if gimel.kafka.avro.schema.source=CDH, the key to lookup confluent schema registry Refer Examples below for CDH Data
gimel.kafka.avro.schema.source.wrapper.key N
This is a Must if gimel.kafka.avro.schema.source=CDH
CDH has 2 levels of avro serialization, this is the key for confluent schema registry lookup - for the outer schema
Refer Examples below for CDH Data flights
gimel.kafka.checkpoint.zookeeper.host Y Zookeeper host where the kafka offsets will be checkpointed for each application localhost:2181
gimel.kafka.checkpoint.zookeeper.path Y The root note in ZK for checkpointing, additional child paths will be appended based on spark.app.name, spark.user, datasetName to get uniqueness of Zk Node /gimel/kafka/checkpoints
gimel.kafka.throttle.batch.fetchRowsOnFirstRun N The number of last N messages to fetch, if consumer is pulling data first time ever. 25000000 25000000
gimel.kafka.throttle.batch.maxRecordsPerPartition N Total Number of Records that will be limited per partition in the Kafka Topic 10000000 10000000
gimel.kafka.throttle.batch.parallelsPerPartition N
This is a very advanced option to Parallelize the number of connections per Partition.
It is best left defaulted. The configuration was introduced during troubleshooting & Performance optimization.
250 250
gimel.kafka.throttle.batch.minRowsPerParallel N
This is to ensure we do not over subscribe to parallelism & cause very few records to be processed per executor.
For instance : providing 100000 messages will be read at minimum from each executor.
100000 100000
gimel.kafka.throttle.batch.targetCoalesceFactor N
If we are writing to a HDFS sink where small files is an issue, we could set this parameter to 1 so that DF will be repartitioned to 1 executor and written to fewer number of files on HDFS
1 Default parallelism in application
gimel.kafka.throttle.streaming.isParallel N
Use in Streaming Mode to parallelize the steps where deserialization happens
this feature is recommended if preserving ordering is not a necessity in the sink (like HDFS)
Once messages are fetched from kafka, with this flag turned ON, messages can be repartition across executors to process data in parallel via below listed properties
false true
gimel.kafka.throttle.streaming.maxRatePerPartition N Max Records to Process per partition 1000 3600
gimel.kafka.throttle.stream.parallelism.factor N The number of executors / repartitions to create while deserializing. 10 10

Generic Kafka Integration | Data Published as Avro Serialized Messages

Create Hive Table Pointing to Kafka Topic

Avro Schema can be INLINE

CREATE EXTERNAL TABLE `default.user`(
 `name` string,
 `age` int,
 `rev` bigint
)
LOCATION 'hdfs:///tmp/user'
TBLPROPERTIES (
  'gimel.storage.type' = 'KAFKA',
  'gimel.kafka.bootstrap.servers'='localhost:9092',
  'gimel.kafka.whitelist.topics'='user',
  'gimel.kafka.checkpoint.zookeeper.host'='zk_host:2181',
  'gimel.kafka.checkpoint.zookeeper.path'='/pcatalog/kafka_consumer/checkpoint',
  'key.serializer'='org.apache.kafka.common.serialization.StringSerializer',
  'value.serializer'='org.apache.kafka.common.serialization.ByteArraySerializer',
  'zookeeper.connection.timeout.ms'='10000',
  'auto.offset.reset'='earliest',
  'gimel.kafka.avro.schema.string'=' {
   "type" : "record",
   "namespace" : "default",
   "name" : "user",
   "fields" : [
      { "name" : "name" , "type" : "string" },
      { "name" : "age" , "type" : "int" },
      { "name" : "rev" , "type" : "long" }
   ]}'
   )

Avro Schema can be fetched from confluent Schema Registry

CREATE EXTERNAL TABLE `default.user`(
 `name` string,
 `age` int,
 `rev` bigint
)
LOCATION 'hdfs:///tmp/user'
TBLPROPERTIES (
  'gimel.storage.type' = 'KAFKA',
  'gimel.kafka.bootstrap.servers'='localhost:9092',
  'gimel.kafka.whitelist.topics'='kafka_topic',
  'gimel.kafka.checkpoint.zookeeper.host'='zkhost:2181',
  'gimel.kafka.checkpoint.zookeeper.path'='/pcatalog/kafka_consumer/checkpoint',
  'gimel.kafka.avro.schema.source'='CSR',
  'gimel.kafka.avro.schema.source.url'='http://schemaregistry:8081',
  'gimel.kafka.avro.schema.source.wrapper.key'='flights', -- This is the Schema Lookup Key for Scheme Registry
  'key.serializer'='org.apache.kafka.common.serialization.StringSerializer',
  'value.serializer'='org.apache.kafka.common.serialization.ByteArraySerializer',
  'zookeeper.connection.timeout.ms'='10000',
  'auto.offset.reset'='earliest',
   )

Write to your Topic via KafkaDataSet

import org.apache.avro.generic.GenericRecord;
import com.paypal.gimel.logger.Logger;
import com.paypal.gimel.datastreamfactory.{StreamingResult, WrappedData};
import com.paypal.gimel._;
import org.apache.spark.rdd._
import org.apache.spark.streaming._
import org.apache.spark._
import org.apache.spark.sql._


// Prepare Test Data
def stringed(n: Int) = s"""{"id": ${n}, "name": "MAC-${n}", "rev": ${n * 10000}}"""
val texts: Seq[String] = (1 to 100).map { x => stringed(x) }.toSeq
val rdd: RDD[String] = sparkSession.sparkContext.parallelize(texts)
val df: DataFrame = sparkSession.read.json(rdd)
//Initiate DataSet
val dataset = com.paypal.gimel.DataSet(sparkSession)
//DataSet Name
val datasetName = "default.user"
//write some data
dataset.write(datasetName,df)

Read your Kafka Topic via KafkaDataSet

//Initiate DataSet
val dataSet: DataSet = DataSet(sparkSession)
//options "can" be used to pick smaller subset of rows
val options = "gimel.kafka.throttle.batch.fetchRowsOnFirstRun=2500:gimel.kafka.throttle.batch.parallelsPerPartition=250:gimel.kafka.throttle.batch.maxRecordsPerPartition=25000000"
//read API
val recsDF = dataSet.read("default.user",options)
// Get Kafka Operator for CheckPoint Operations
val kafkaOperator = dataSet.latestKafkaDataSetReader.get
// If required, clear checkpoint to begin reading from kafka from beginning
kafkaOperator.clearCheckPoint()
// Do some usecase
recsDF.show()
// Save CheckPoint at the end of each batch
kafkaOperator.saveCheckPoint()

Read your Kafka Topic via KafkaDataStream

//Specify Batch Interval for Streaming
val batchInterval = 15
//Context
val ssc = new StreamingContext(sc, Seconds(batchInterval.toInt))
//Initiate DStream
val dataStream = DataStream(ssc)
// Assign your Dataset Name
val datasetName = "default.user"
//Get Reference to Stream
val streamingResult: StreamingResult = dataStream.read(datasetName)
//Clear CheckPoint if necessary
streamingResult.clearCheckPoint("clear")
//Helper for Clients
  streamingResult.dStream.foreachRDD { rdd =>
    val k: RDD[WrappedData] = rdd
    val count = rdd.count()
    if (count > 0) {
      /**
        * Mandatory | Get Offset for Current Window, so we can checkpoint at the end of this window's operation
        */
      streamingResult.getCurrentCheckPoint(rdd)
      /**
        * Begin | User's Usecases
        */
      //Sample UseCase | Display Count
      println("count is -->")
      println(count)
      //Sample UseCase | Get Avro Generic Record
      val rddAvro: RDD[GenericRecord] = streamingResult.convertBytesToAvro(rdd)
      rddAvro.map(x => x.toString)
      println("sample records from Avro-->")
      rddAvro.map(x => x.toString).take(10).foreach(x => println(x))
      //Sample UseCase | Convert to DataFrame
      val df: DataFrame = streamingResult.convertAvroToDF(sqlContext, rddAvro)
      println("sample records -->")
      df.show(5)
      /**
        * End | User's Usecases
        */
      /**
        * Mandatory | Save Current Window - CheckPoint
        */
      streamingResult.saveCurrentCheckPoint()
    }
  }

//Streaming will start after these steps
dataStream.streamingContext.start()
dataStream.streamingContext.awaitTermination()

Read Avro SerDe Kafka Topic - Batch via SQL

%%pcatalog-batch select * from default.flights;

Read Avro SerDe Kafka Topic - Stream via SQL

%%pcatalog-stream select * from default.flights;

Simple Kafka Topic With String | JSON | Binary Messages

Create Hive Table Pointing to Kafka Topic

CREATE EXTERNAL TABLE `default.hiveTable`(
    `payload` string
   )
   TBLPROPERTIES (
     'gimel.storage.type' = 'KAFKA',
     'gimel.kafka.bootstrap.servers'='zk_host:9092',
     'gimel.kafka.whitelist.topics'='your_topic',
     'key.serializer'='org.apache.kafka.common.serialization.StringSerializer',
     'value.serializer'='org.apache.kafka.common.serialization.StringSerializer',
     'zookeeper.connection.timeout.ms'='10000',
     'auto.offset.reset'='earliest',
     'gimel.kafka.checkpoint.zookeeper.host'='zk_host:2181',
     'gimel.kafka.checkpoint.zookeeper.path'='/pcatalog/kafka_consumer/checkpoint',
     'gimel.kafka.message.column.alias'='value',
     'gimel.kafka.message.value.type'='string' -- can be json or binary depending on the messaging format requirement
      )

Write to your Topic via KafkaDataSet

// Prepare Test Data
def stringed(n: Int) = s"""{"id": ${n}, "name": "MAC-${n}", "rev": ${n * 10000}}"""
val texts: Seq[String] = (1 to 100).map { x => stringed(x) }.toSeq
val rdd: RDD[String] = sparkSession.sparkContext.parallelize(texts)
//Initiate DataSet
val dataset = com.paypal.gimel.DataSet(sparkSession)
//write some data
dataset.write("default.hiveTable",rdd)

Read your Kafka Topic via KafkaDataSet

//Initiate DataSet
val dataSet: DataSet = DataSet(sparkSession)
//options "can" be used to pick smaller subset of rows
val options = "gimel.kafka.throttle.batch.fetchRowsOnFirstRun=2500:gimel.kafka.throttle.batch.batch.parallelsPerPartition=250:gimel.kafka.throttle.batch.maxRecordsPerPartition=25000000"
//read API
val recsDF = dataSet.read("default.hiveTable",options)
// Get Kafka Operator for CheckPoint Operations
val kafkaOperator = dataSet.latestKafkaDataSetReader.get
// If required, clear checkpoint to begin reading from kafka from beginning
kafkaOperator.clearCheckPoint()
// Do some usecase
recsDF.show()
// Save CheckPoint at the end of each batch
kafkaOperator.saveCheckPoint()

Read your Topic via KafkaDataStream

//Specify Batch Interval for Streaming
val batchInterval = 15
//Context
val ssc = new StreamingContext(sc, Seconds(batchInterval.toInt))
//Initiate DStream
val dataStream = DataStream(ssc)
// Assign your Dataset Name
val datasetName = "default.hiveTable"
//Get Reference to Stream
val streamingResult: StreamingResult = dataStream.read(datasetName)
//Clear CheckPoint if necessary
streamingResult.clearCheckPoint("clear")
//Helper for Clients
  streamingResult.dStream.foreachRDD { rdd =>
    val k: RDD[WrappedData] = rdd
    val count = rdd.count()
    if (count > 0) {
      /**
        * Mandatory | Get Offset for Current Window, so we can checkpoint at the end of this window's operation
        */
      streamingResult.getCurrentCheckPoint(rdd)
      /**
        * Begin | User's Usecases
        */
      //Sample UseCase | Display Count
      println("count is -->")
      println(count)
      //Sample UseCase | If Kafka topic is a Simple String Message, use below function to get DF
      streamingResult.convertStringMessageToDF(sqlContext,rdd).show
      /**
        * End | User's Usecases
        */
      /**
        * Mandatory | Save Current Window - CheckPoint
        */
      streamingResult.saveCurrentCheckPoint()
    }
  }

//Streaming will start after these steps
dataStream.streamingContext.start()
dataStream.streamingContext.awaitTermination()

Read Avro SerDe Kafka Topic - Batch via SQL

%%pcatalog-batch select value from default.hiveTable;

Read Avro SerDe Kafka Topic - Stream via SQL

%%pcatalog-stream select value from default.hiveTable;