-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstep01_pb_to_uff.py
executable file
·32 lines (30 loc) · 1.35 KB
/
step01_pb_to_uff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python3
import graphsurgeon as gs
import tensorflow as tf
import uff
if __name__ == "__main__":
# USER DEFINED VALUES
output_nodes = ["dimension/LeakyRelu","orientation/l2_normalize","confidence/Softmax"]
input_node = "input_1"
pb_file = "sample.pb"
uff_file = "sample.uff"
# END USER DEFINED VALUES
# read tensorflow graph
# NOTE: Make sure to freeze and optimize (remove training nodes, etc.)
dynamic_graph = gs.DynamicGraph(pb_file)
nodes=[n.name for n in dynamic_graph.as_graph_def().node]
ns={}
for node in nodes:
# replace LeakyRelu with default TRT plugin LReLU_TRT
if "LeakyRelu" in node:
ns[node]=gs.create_plugin_node(name=node,op="LReLU_TRT", negSlope=0.1)
# replace Maximum with L2Norm_Helper_TRT max operation (CUDA's fmaxf)
if node == "orientation/l2_normalize/Maximum":
ns[node]=gs.create_plugin_node(name=node,op="L2Norm_Helper_TRT",op_type=0,eps=1e-12)
# replace Rsqrt with L2Norm_Helper_TRT max operation (CUDA's rsqrtf)
if node == "orientation/l2_normalize/Rsqrt":
ns[node]=gs.create_plugin_node(name=node,op="L2Norm_Helper_TRT",op_type=1)
dynamic_graph.collapse_namespaces(ns)
# write UFF to file
uff_model = uff.from_tensorflow(dynamic_graph.as_graph_def(), output_nodes=output_nodes,
output_filename=uff_file, text=False)