-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcalc_signal.c
483 lines (439 loc) · 17.3 KB
/
calc_signal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/* calc_signal.c -- based on m3d2s.f by I-Yang Lee
* Karin Lagergren
*
* This module contains the main interface to the signal calculation
* code.
*
* To use:
* -- call signal_calc_init. This will initialize geometry, fields,
* drift velocities etc.
* -- call get_signal
*
*/
/* TODO: see FIXME's below
charge_trapping is just a placeholder ATM. Should it be defined
in the fields module?
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "mjd_siggen.h"
#include "calc_signal.h"
#include "point.h"
#include "detector_geometry.h"
#include "fields.h"
#define HOLE_CHARGE 1.0
#define ELECTRON_CHARGE -1.0
/* the following is the diffusion coefficient for holes in Ge at 77K
at low field (~ 100 V/cm)
the diffusion coefficient drops at higher fields, and higher temperatures
see Jacoboni et al., Phys. Rev. B24, 2 (1981) 1014-1026.
size sigma = sqrt(2Dt), t = time, D = mu*k*T/e
mu = mobility, k = Boltzmann const., T = temp, e = electron charge
mu_h = 4e4 cm^2/V/s, mu_e = 5e4 cm^2/V/s at 77K, so
D_h = 265 cm^2/s, D_e = 332 cm^2/s
and goes down roughly as 1/Temp (since mu goes as T^-1.7 or T^-2.3)
we also convert (2Dt) from sigma-squared to FWHM-squared
for Si at 300K,
mu_h = 450 cm^2/V/s, mu_e = 1500 cm^2/V/s, so
D_h = 12 cm^2/s, D_e = 39 cm^2/s
*/
/* here are some definitions used for an old method, where I calculated FWHM-squared:
// germanium: 2Dt = sigma^2; we want FWHM^2 in mm^2 / ns
#define TWO_TIMES_DIFFUSION_COEF_H \
(2.0 * 2.355*2.355 * 2.65e-5 * setup->step_time_calc * 77.0/setup->xtal_temp)
#define TWO_TIMES_DIFFUSION_COEF_E \
(2.0 * 2.355*2.355 * 3.32e-5 * setup->step_time_calc * 77.0/setup->xtal_temp)
// silicon:
#define TWO_TIMES_DIFFUSION_COEF_H_Si \
(1.3e-5 * setup->step_time_calc * 300.0/setup->xtal_temp)
#define TWO_TIMES_DIFFUSION_COEF_E_Si \
(4.3e-5 * setup->step_time_calc * 300.0/setup->xtal_temp)
*/
/* In the new method, I use dsigma/dt = D/sigma to calculate FWHM */
#define DIFFUSION_COEF (setup->v_over_E * 0.67)
/* above is my own approximate parameterization of measurements of Jacoboni et al.
0.67 = 2.355 * 2.355 * 0.12 to get D in mm2/s, and scaled to FWHM2/sigma2
v_over_E = drift velocity / electric field ~ mu
note that Einstein's equation is D = mu*kT/e
kT/e ~ 0.007/V ~ 0.07 mm/Vcm, => close enough to 0.12, okay
*/
/* prototypes for module-private functions*/
//static int make_signal(point pt, float *signal, float q, MJD_Siggen_Setup *setup);
//static float charge_trapping(vector dx, float q); //trapping
/* signal_calc_init
read setup from configuration file,
then read the electric field and weighting potential,
and initialize the signal calculation variables
returns 0 for success
*/
int signal_calc_init(char *config_file_name, MJD_Siggen_Setup *setup) {
if (read_config(config_file_name, setup)) return 1;
TELL_CHATTY("r: %.2f z: %.2f\n", setup->xtal_radius, setup->xtal_length);
setup->ntsteps_out = setup->time_steps_calc /
lrintf(setup->step_time_out/setup->step_time_calc);
TELL_NORMAL("Will use %d time steps in calculations, each %.2f ns long;\n"
"the output signals will have %d time steps, each %.2f ns long\n",
setup->time_steps_calc, setup->step_time_calc,
setup->ntsteps_out, setup->step_time_out);
TELL_NORMAL("Reading field data...\n");
if (field_setup(setup) != 0) return -1;
if ((setup->dpath_e = (point *) malloc(setup->time_steps_calc*sizeof(point))) == NULL ||
(setup->dpath_h = (point *) malloc(setup->time_steps_calc*sizeof(point))) == NULL) {
error("Path malloc failed\n");
return -1;
}
tell("Setup of signal calculation done\n");
return 0;
}
/* get_signal
calculate signal for point pt. Result is placed in signal_out array
returns -1 if outside crystal, 1 on success
if signal_out == NULL => no signal is stored
*/
int get_signal(point pt, float *signal_out, MJD_Siggen_Setup *setup) {
static float *signal, *sum, *tmp;
static int tsteps = 0;
float w, x, y;
char tmpstr[MAX_LINE];
int j, k, l, dt, err, comp_f;
/* first time -- allocate signal and sum arrays */
if (tsteps != setup->time_steps_calc) {
tsteps = setup->time_steps_calc;
if ((signal = (float *) malloc(tsteps*sizeof(*signal))) == NULL ||
(tmp = (float *) malloc(tsteps*sizeof(*tmp))) == NULL ||
(sum = (float *) malloc(tsteps*sizeof(*sum))) == NULL) {
error("malloc failed in get_signal\n");
return -1;
}
}
for (j = 0; j < tsteps; j++) signal[j] = 0.0;
if (outside_detector(pt, setup)) {
TELL_CHATTY("Point %s is outside detector!\n", pt_to_str(tmpstr, MAX_LINE, pt));
return -1;
}
TELL_CHATTY("Calculating signal for %s...\n", pt_to_str(tmpstr, MAX_LINE, pt));
memset(setup->dpath_e, 0, tsteps*sizeof(point));
memset(setup->dpath_h, 0, tsteps*sizeof(point));
err = make_signal(pt, signal, ELECTRON_CHARGE, setup);
err = make_signal(pt, signal, HOLE_CHARGE, setup);
/* make_signal returns 1 for success; require hole signal but not electron */
/* change from current signal to charge signal, i.e.
each time step contains the summed signals of all previous time steps */
for (j = 1; j < tsteps; j++) signal[j] += signal[j-1];
if (signal_out != NULL) {
if (setup->charge_cloud_size > 0.001 || setup->use_diffusion) {
/* convolute with a Gaussian to correct for charge cloud size
and initial velocity
charge_cloud_size = initial FWHM of charge cloud, in mm,
NOTE this uses initial velocity of holes only;
this may not be quite right if electron signal is strong */
/* difference in time between center and edge of charge cloud */
dt = (int) (1.5f + setup->charge_cloud_size /
(setup->step_time_calc * setup->initial_vel));
if (setup->initial_vel < 0.00001f) dt = 0;
TELL_CHATTY("Initial vel, size, dt = %f mm/ns, %f mm, %d steps\n",
setup->initial_vel, setup->charge_cloud_size, dt);
if (setup->use_diffusion) {
dt = (int) (1.5f + setup->final_charge_size /
(setup->step_time_calc * setup->final_vel));
TELL_CHATTY(" Final vel, size, dt = %f mm/ns, %f mm, %d steps\n",
setup->final_vel, setup->final_charge_size, dt);
}
if (dt > 1) {
/* Gaussian */
w = ((float) dt) / 2.355;
l = dt/10; // use l to speed up convolution of waveform with gaussian;
if (l < 1) { // instead of using every 1-ns step, use steps of FWHM/10
l = 1;
} else if (setup->step_time_out > setup->preamp_tau) {
if (l > setup->step_time_out/setup->step_time_calc)
l = setup->step_time_out/setup->step_time_calc;
} else {
if (l > setup->preamp_tau/setup->step_time_calc)
l = setup->preamp_tau/setup->step_time_calc;
}
// TELL_CHATTY(">> l: %d\n", l);
for (j = 0; j < tsteps; j++) {
sum[j] = 1.0;
tmp[j] = signal[j];
}
for (k = l; k < 2*dt; k+=l) {
x = ((float) k)/w;
y = exp(-x*x/2.0);
for (j = 0; j < tsteps - k; j++){
sum[j] += y;
tmp[j] += signal[j+k] * y;
sum[j+k] += y;
tmp[j+k] += signal[j] * y;
}
}
for (j = 0; j < tsteps; j++){
signal[j] = tmp[j]/sum[j];
}
}
}
/* now, compress the signal and place it in the signal_out array;
truncate the signal if time_steps_calc % ntsteps_out != 0 */
comp_f = setup->time_steps_calc/setup->ntsteps_out;
for (j = 0; j < setup->ntsteps_out; j++) signal_out[j] = 0;
for (j = 0; j < setup->ntsteps_out*comp_f; j++)
signal_out[j/comp_f] += signal[j]/comp_f;
/* do RC integration for preamp risetime */
if (setup->preamp_tau/setup->step_time_out >= 0.1f)
rc_integrate(signal_out, signal_out,
setup->preamp_tau/setup->step_time_out, setup->ntsteps_out);
}
/* make_signal returns 1 for success; require hole signal but not electron */
if (err) return -1;
return 1;
}
/* make_signal
Generates the signal originating at point pt, for charge q
returns 0 for success
*/
int make_signal(point pt, float *signal, float q, MJD_Siggen_Setup *setup) {
float wpot, wpot2=0, dwpot=0;
char tmpstr[MAX_LINE];
point new_pt;
vector v, dx;
float vel0, vel1 = 0, wpot_old=-1;
// double diffusion_coeff;
double repulsion_fact = 0.0, ds2, ds3, dv, ds_dt;
int ntsteps, i, t, n, collect2pc, low_field=0, surface_drift=0, stop_drifting = 0;
new_pt = pt;
if (setup->impurity_z0 != 0.0) {
collect2pc = ((q > 0 && setup->impurity_z0 < 0) || // holes for p-type
(q < 0 && setup->impurity_z0 > 0)); // electrons for n-type
} else { // sometimes the impurity_z0 values can be commented out
collect2pc = ((q > 0 && setup->efld[0][2 + (int)(setup->pc_length/setup->xtal_grid)].z < 0) || // holes for p-type
(q < 0 && setup->efld[0][2 + (int)(setup->pc_length/setup->xtal_grid)].z > 0)); // electrons for n-type
}
/*
if (q > 0) {
diffusion_coeff = TWO_TIMES_DIFFUSION_COEF_H;
} else {
diffusion_coeff = TWO_TIMES_DIFFUSION_COEF_E;
}
*/
ntsteps = setup->time_steps_calc;
for (t = 0; drift_velocity(new_pt, q, &v, setup) >= 0 && !stop_drifting; t++) {
if (q > 0) {
setup->dpath_h[t] = new_pt;
} else {
setup->dpath_e[t] = new_pt;
}
if (collect2pc) {
if (t == 0) {
vel1 = setup->final_vel = setup->initial_vel = vector_length(v);
setup->final_charge_size = setup->charge_cloud_size;
if (setup->use_diffusion) {
if (setup->final_charge_size < 0.01) setup->final_charge_size = 0.01;
/* for a spherically symmetric charge cloud, the equivalent
delta-E at a distance of 1 sigma from the cloud center is
dE = Q/(4*pi*epsilon*sigma^2) (Q is charge inside the 3D 1-sigma envelope)
dE (V/cm) = Q (C) * 1/(4*pi*epsilon) (N m2 / C2) / sigma2 (mm2)
1 V/m = 1 N/C
dE (V/cm) = Q (C) * 1/(4*pi*epsilon) (V m / C) / sigma2 (mm2)
dE (V/cm) = repulsion_fact * FWHM/sigma / (FWHM^2) (mm2), so
repulsion_fact = (FWHM/sigma)^3 * Q (C) * 1/(4*pi*epsilon) (V m / C) * mm/m * mm/cm
*/
if (setup->energy > 0.1) { // set up charge cloud self-repulsion
repulsion_fact = setup->energy * 0.67*0.67*0.67 / 0.003; // charge in 1 sigma (3D)
repulsion_fact /= 6.241e18; // convert to Coulombs
repulsion_fact *= 9.0e13/16.0; // 1/(4*pi*epsilon) (N m2 / C2) * 1e4
repulsion_fact *= 2.355*2.355*2.355; // convert FWHM to sigma
}
}
TELL_CHATTY("initial v: %f (%e %e %e)\n",
setup->initial_vel, v.x, v.y, v.z);
} else if (setup->use_diffusion) {
vel0 = vel1;
vel1 = vector_length(v);
setup->final_charge_size *= vel1/vel0; // effect of acceleration
// include effects of acceleration and diffusion on cloud size
dv = repulsion_fact * setup->dv_dE / // effect of repulsion
(setup->final_charge_size*setup->final_charge_size);
// FIXME? this next line could more more fine-grained
if (dv > 0.05) dv = 0.05; // on account of drift velocity saturation
ds_dt = dv + DIFFUSION_COEF/setup->final_charge_size; // effect of diffusion
if (ds_dt > 0.05 || ds_dt * setup->step_time_calc > 0.1) {
// nonlinear growth due to small size; need more careful calculation
TELL_CHATTY("ds_dt = %.2f; size = %.2f", ds_dt, setup->final_charge_size);
// ds_dt = 0.05; // artificially limit nonlinear growth
ds2 = 2.0 * DIFFUSION_COEF * setup->step_time_calc; // increase^2 from diff.
ds3 = (setup->final_charge_size*setup->final_charge_size *
(setup->final_charge_size +
3.0 * dv * setup->step_time_calc)); // FWHM^3 after repulsion
setup->final_charge_size = sqrt(ds2 + pow(ds3, 0.6667));
TELL_CHATTY(" -> %.2f\n", setup->final_charge_size);
} else {
setup->final_charge_size += ds_dt * setup->step_time_calc; // effect of diff. + rep.
}
}
}
TELL_CHATTY("pt: (%.2f %.2f %.2f), v: (%e %e %e)",
new_pt.x, new_pt.y, new_pt.z, v.x, v.y, v.z);
if (0 && t >= ntsteps - 2) { // DRC removed (if(0)) Oct 2019; t>ntsteps now dealt with below
if (collect2pc || wpot > WP_THRESH_ELECTRONS) {
/* for p-type, this is hole or electron+high wp */
TELL_CHATTY("\nExceeded maximum number of time steps (%d)\n", ntsteps);
low_field = 1;
// return -1;
}
break;
}
if (wpotential(new_pt, &wpot, setup) != 0) {
TELL_NORMAL("\nCan calculate velocity but not WP at %s!\n",
pt_to_str(tmpstr, MAX_LINE, new_pt));
return -1;
}
if (wpot < 0.0) wpot = 0.0;
TELL_CHATTY(" -> wp: %.10f\n", wpot);
/* ------------- DCR added Oct 2019: if WP is very small or large, then stop drifting */
if (!collect2pc && wpot < 5.0e-5) stop_drifting = 2; // drifting to outside
if (collect2pc && 1.0-wpot < 5.0e-5) stop_drifting = 3; // drifting to point contact
if (t >= setup->time_steps_calc - 2) stop_drifting = 1; // have run out of time...
if (t > 0) signal[t] += q*(wpot - wpot_old);
// FIXME! Hack added by DCR to deal with undepleted point contact
if (wpot >= 0.999 && (wpot - wpot_old) < 0.0002) {
low_field = 1;
break;
}
wpot_old = wpot;
dx = vector_scale(v, setup->step_time_calc);
if (surface_drift && dx.z < 0) {
dx.x *= setup->surface_drift_vel_factor; // Hmmm... should the default be zero or one?
dx.y *= setup->surface_drift_vel_factor;
dx.z = 0;
}
new_pt = vector_add(new_pt, dx);
// q = charge_trapping(dx, q); //FIXME
// look for charges on passivated surface of a PPC detector
if (new_pt.z < 0 && // at or below surface, and
(setup->wrap_around_radius <= setup->pc_radius || // this is a PPC detector
new_pt.x*new_pt.x + new_pt.y*new_pt.y < // or point is inside wrap-around
setup->wrap_around_radius*setup->wrap_around_radius)) {
TELL_CHATTY(" -> Passivated surface! q = %.2f r = %.2f\n",
q, sqrt(new_pt.x*new_pt.x + new_pt.y*new_pt.y));
//break;
surface_drift = 1;
new_pt.z = 0;
}
}
if (t == 0) {
TELL_CHATTY("The starting point %s is outside the WP or field.\n",
pt_to_str(tmpstr, MAX_LINE, pt));
return -1;
}
if (low_field) {
TELL_CHATTY("Low field near point contact; this may or may not be a problem.\n");
} else {
TELL_CHATTY("Drifted to edge of WP or field grid, point: %s q: %.2f\n",
pt_to_str(tmpstr, MAX_LINE, new_pt), q);
}
if (!low_field && stop_drifting<2) {
/* figure out how much we must drift to get to the crystal boundary */
for (n = 0; n+t < ntsteps && !outside_detector(new_pt, setup); n++){
new_pt = vector_add(new_pt, dx);
if (q > 0) setup->dpath_h[t+n] = new_pt;
else setup->dpath_e[t+n] = new_pt;
}
if (n == 0) n = 1; /* always drift at least one more step */
// TELL_CHATTY(
TELL_NORMAL("q: %.1f t: %d n: %d ((%.2f %.2f %.2f)=>(%.2f %.2f %.2f))\n",
q, t, n, pt.x, pt.y, pt.z, new_pt.x, new_pt.y, new_pt.z);
if (n + t >= ntsteps){
n = ntsteps - t;
if (q > 0 || wpot > WP_THRESH_ELECTRONS) { /* hole or electron+high wp */
TELL_CHATTY("Exceeded maximum number of time steps (%d)\n", ntsteps);
/* check WP to see if we have produced most of the signal */
if ((wpot < 0.95 || wpot > 0.05) &&
wpotential(new_pt, &wpot2, setup) != 0) {
TELL_CHATTY("Cannot finish drifting to make at least 95\% of signal.\n");
return -1; /* FIXME: could this be improved? */
}
/* drift to new_pt and wpot2 */
dwpot = (wpot2 - wpot)/n;
}
} else {
/* make WP go gradually to 1 or 0 */
if (wpot > 0.3) {
dwpot = (1.0 - wpot)/n;
} else {
dwpot = - wpot/n;
}
}
/* now drift the final n steps */
dx = vector_scale(v, setup->step_time_calc);
if (new_pt.z > 0) { // charges NOT on passivated surface
for (i = 0; i < n; i++){
signal[i+t] += q*dwpot;
// q = charge_trapping(dx, q); //FIXME
}
}
}
TELL_CHATTY("q:%.2f pt: %s\n", q, pt_to_str(tmpstr, MAX_LINE, pt));
if (q > 0) setup->final_vel = vector_length(v);
return 0;
}
//FIXME -- placeholder function. Even parameter list is dodgy
/*
static float charge_trapping(vector dx, float q){
return q;
}
*/
int rc_integrate(float *s_in, float *s_out, float tau, int time_steps){
int j;
float s_in_old, s; /* DCR: added so that it's okay to
call this function with s_out == s_in */
if (tau < 1.0f) {
for (j = time_steps-1; j > 0; j--) s_out[j] = s_in[j-1];
s_out[0] = 0.0;
} else {
s_in_old = s_in[0];
s_out[0] = 0.0;
for (j = 1; j < time_steps; j++) {
s = s_out[j-1] + (s_in_old - s_out[j-1])/tau;
s_in_old = s_in[j];
s_out[j] = s;
}
}
return 0;
}
/* signal_calc_finalize
* Clean up (free arrays, close open files...)
*/
int signal_calc_finalize(MJD_Siggen_Setup *setup){
fields_finalize(setup);
free(setup->dpath_h);
free(setup->dpath_e);
return 0;
}
int drift_path_e(point **pp, MJD_Siggen_Setup *setup){
*pp = setup->dpath_e;
return setup->time_steps_calc;
}
int drift_path_h(point **pp, MJD_Siggen_Setup *setup){
*pp = setup->dpath_h;
return setup->time_steps_calc;
}
/* tell
write to stdout, provided that verb_level is above the threshold */
void tell(const char *format, ...){
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
return;
}
/*error
report error messages to stderr */
void error(const char *format, ...) {
va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
return;
}