-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
129 lines (114 loc) · 3.94 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Flexible run of the multiscale approximation experiments
"""
import argparse
from itertools import product
import numpy as np
from Config.Options import options
from Config.Config import config
import Experiment
from Tools.Utils import set_output_directory
from DataSites.PolynomialReproduction import condition_g
def parse_arguments():
parser = argparse.ArgumentParser("RBF Approximation Script")
parser.add_argument(
"-f",
"--function",
type=str,
help="Original function for approximation, see OriginalFunction.py",
choices=options.get_options("original_function"),
default="numbers",
)
parser.add_argument(
"-m",
"--manifold",
choices=options.get_options("manifold").keys(),
default="numbers",
)
parser.add_argument(
"-t",
"--tangent-approximation",
action="store_true",
help="Should approximate using tangent averaging?",
)
parser.add_argument(
"-nv",
"--norm-visualization",
action="store_true",
help="Should visualize quickly using norm visualization",
)
parser.add_argument(
"-s",
"--single-scale",
action="store_true",
help="Should approximate the single scale case?",
)
parser.add_argument("-n", "--number-of-scales", type=int, default=1)
parser.add_argument(
"-b", "--base-index", type=int, help="The first number of scales", default=1
)
parser.add_argument(
"-sf", "--scaling-factor", type=float, default=config.SCALING_FACTOR
)
parser.add_argument("-e", "--execution-name", type=str, default="NoName")
parser.add_argument("-a", "--adaptive", action="store_true", help="is adaptive m0")
parser.add_argument(
"-mt",
"--method",
choices=options.get_options("approximation_method").keys(),
default="quasi",
help="approximation method",
)
parser.add_argument("-dm", "--dont-multi", action="store_true")
args = parser.parse_args()
base_config = dict()
base_config["ORIGINAL_FUNCTION"] = options.get_option(
"original_function", args.function
)
base_config["MANIFOLD"] = options.get_option("manifold", args.manifold)()
base_config["IS_APPROXIMATING_ON_TANGENT"] = args.tangent_approximation
base_config["NORM_VISUALIZATION"] = args.norm_visualization
base_config["SCALING_FACTOR"] = args.scaling_factor
is_tangent = "Tangent" if args.tangent_approximation else "Intrinsic"
base_config["EXECUTION_NAME"] = "{}_{}".format(args.manifold, is_tangent)
execution_name = (
args.execution_name
if (args.execution_name != "NoName")
else "{}_{}".format(args.manifold, is_tangent)
)
base_config["EXECUTION_NAME"] = execution_name
base_config["IS_ADAPTIVE"] = args.adaptive
base_config["SCALED_INTERPOLATION_METHOD"] = args.method
config.set_base_config(base_config)
config.renew()
if args.dont_multi:
diffs = []
else:
diffs = [
{
"NAME": "multiscale",
"NUMBER_OF_SCALES": args.base_index + args.number_of_scales - 1,
"MSE_LABEL": "Multiscale",
}
]
if args.single_scale:
diffs = diffs + [
{
"NAME": "single_scale_{}".format(index),
"MSE_LABEL": "Single scale",
"NUMBER_OF_SCALES": 1,
"SCALING_FACTOR": args.scaling_factor ** index,
"SCALING_FACTOR_POWER": index,
}
for index in range(args.base_index, args.base_index + args.number_of_scales)
]
return diffs
def main():
diffs = parse_arguments()
output_dir = config.OUTPUT_DIR
with set_output_directory(output_dir):
results = Experiment.run_all_experiments(diffs)
if len(condition_g):
print(f"Average condition {np.average(condition_g)}")
if __name__ == "__main__":
main()