-
Notifications
You must be signed in to change notification settings - Fork 689
/
Copy pathai_travel_agent.py
223 lines (167 loc) · 6.36 KB
/
ai_travel_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import requests
from dotenv import load_dotenv
from litellm import completion
from openai import OpenAI
load_dotenv()
import sys
sys.path.append(".")
from agentneo import AgentNeo, Tracer, Evaluation, launch_dashboard
neo_session = AgentNeo(session_name="ai_travel_agent_session22")
project_name = "ai_travel_agent_demo22"
try:
neo_session.create_project(project_name=project_name)
print("Project created successfully")
except:
neo_session.connect_project(project_name=project_name)
print("Project connected successfully")
tracer = Tracer(session=neo_session)
tracer.start()
# Shared LLM call function
# def llm_call(prompt, max_tokens=512, model="gpt-4o-mini"):
# response = completion(
# model=model,
# messages=[{"role": "user", "content": prompt}],
# max_tokens=max_tokens,
# temperature=0.7,
# )
# return response.choices[0].message.content.strip()
@tracer.trace_llm(name="llm_call")
def llm_call(prompt, max_tokens=512, model="gpt-4o-mini"):
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=0.7,
)
return response.choices[0].message.content.strip()
# Tools outside agents
@tracer.trace_tool(name="weather_tool")
def weather_tool(destination):
api_key = os.environ.get("OPENWEATHERMAP_API_KEY")
base_url = "http://api.openweathermap.org/data/2.5/weather"
params = {"q": destination, "appid": api_key, "units": "metric"}
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
data = response.json()
weather_description = data["weather"][0]["description"]
temperature = data["main"]["temp"]
return f"{weather_description.capitalize()}, {temperature:.1f}°C"
except requests.RequestException:
return "Weather data not available."
@tracer.trace_tool(name="currency_converter_tool")
def currency_converter_tool(amount, from_currency, to_currency):
api_key = os.environ.get("EXCHANGERATE_API_KEY")
base_url = f"https://v6.exchangerate-api.com/v6/{api_key}/pair/{from_currency}/{to_currency}"
try:
response = requests.get(base_url)
response.raise_for_status()
data = response.json()
if data["result"] == "success":
rate = data["conversion_rate"]
return amount * rate
else:
return None
except requests.RequestException:
return None
@tracer.trace_tool(name="flight_price_estimator_tool")
def flight_price_estimator_tool(origin, destination):
# This is a mock function. In a real scenario, you'd integrate with a flight API.
api_key = os.environ.get("FLIGHT_API_KEY")
# Implement actual API call here
return f"Estimated price from {origin} to {destination}: $500-$1000"
# Agent with persona
@tracer.trace_agent(name="itinerary_agent")
class ItineraryAgent:
def __init__(self, persona="Itinerary Agent"):
self.persona = persona
def plan_itinerary(self, user_preferences, duration=3):
itinerary_prompt = f"""
You are a travel expert named {self.persona}.
Based on the following user preferences, create a {duration}-day travel itinerary.
User Preferences:
{user_preferences}
Itinerary:
"""
return llm_call(itinerary_prompt, max_tokens=512)
# Main function
@tracer.trace_agent(name="travel_agent")
def travel_agent():
print("Welcome to the Personalized Travel Planner!\n")
# Get user input
user_input = input("Please describe your ideal vacation: ")
# Extract preferences
preferences_prompt = f"""
Extract key travel preferences from the following user input:
"{user_input}"
Please provide the extracted information in this format:
Destination:
Activities:
Budget:
Duration (in days):
"""
extracted_preferences = llm_call(preferences_prompt)
print("\nExtracted Preferences:")
print(extracted_preferences)
# Parse extracted preferences
preferences = {}
for line in extracted_preferences.split("\n"):
if ":" in line:
key, value = line.split(":", 1)
preferences[key.strip()] = value.strip()
# Validate extracted preferences
required_keys = ["Destination", "Activities", "Budget", "Duration (in days)"]
if not all(key in preferences for key in required_keys):
print("\nCould not extract all required preferences. Please try again.")
return
# Fetch additional information
weather = weather_tool(preferences["Destination"])
print(f"\nWeather in {preferences['Destination']}: {weather}")
origin = input("Please enter your departure city: ")
flight_price = flight_price_estimator_tool(origin, preferences["Destination"])
print(flight_price)
# Plan itinerary
itinerary_agent = ItineraryAgent()
itinerary = itinerary_agent.plan_itinerary(
extracted_preferences, int(preferences["Duration (in days)"])
)
print("\nPlanned Itinerary:")
print(itinerary)
# Currency conversion
budget_amount = float(preferences["Budget"].replace("$", "").replace(",", ""))
converted_budget = currency_converter_tool(budget_amount, "USD", "INR")
if converted_budget:
print(f"\nBudget in INR: {converted_budget:.2f} INR")
else:
print("\nCurrency conversion not available.")
# Generate travel summary
summary_prompt = f"""
Summarize the following travel plan:
Destination: {preferences['Destination']}
Activities: {preferences['Activities']}
Budget: {preferences['Budget']}
Duration: {preferences['Duration (in days)']} days
Itinerary: {itinerary}
Weather: {weather}
Flight Price: {flight_price}
Travel Summary:
"""
travel_summary = llm_call(summary_prompt, max_tokens=2248)
print("\nTravel Summary:")
print(travel_summary)
if __name__ == "__main__":
travel_agent()
tracer.stop()
# Evaluate the performance
exe = Evaluation(session=neo_session, trace_id=tracer.trace_id)
exe.evaluate(metric_list=['goal_decomposition_efficiency',
'goal_fulfillment_rate',
'tool_call_correctness_rate',
'tool_call_success_rate'])
# print the performance result
# metric_results = exe.get_results()
# print(metric_results)
# Launch dashboard
launch_dashboard(port=3000)