-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathapp_utils.py
184 lines (149 loc) · 5.86 KB
/
app_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import inspect
import os
import numpy as np
import pandas as pd
from scipy.spatial import ConvexHull
from src.analysis.similarity_acc_matrix import compute_acc_between_years
from src.analysis.track_trends_sim import compute_similarity_matrix_years
from src.utils.misc import get_sub, get_tail_from_data_path
from src.utils.statistics import find_freq, find_norm_freq, find_productivity
def get_default_args(func):
signature = inspect.signature(func)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
def get_values_from_indices(lst, idx_list):
return [lst[idx] for idx in idx_list], [
lst[idx] for idx in range(len(lst)) if idx not in idx_list
]
def get_years_from_data_path(data_path):
years = sorted(
[fil.split(".")[0] for fil in os.listdir(data_path) if fil != "compass.txt"]
)
return years
def get_productivity_for_range(
start_year, end_year, selected_ngrams, years, data_path, n, normalize=False
):
yearss = []
words = []
prodss = []
start_year_idx = years.index(start_year)
end_year_idx = years.index(end_year)
for year_idx in range(start_year_idx, end_year_idx + 1):
year = years[year_idx]
year_text = read_text_file(data_path, year)
prods = find_productivity(selected_ngrams, year_text, n, normalize)
for word, productivity in prods.items():
yearss.append(year)
words.append(word)
prodss.append(productivity)
productivity_df = pd.DataFrame.from_dict(
{"Year": yearss, "Word": words, "Productivity": prodss}
)
return productivity_df
def get_frequency_for_range(
start_year, end_year, selected_ngrams, years, data_path, n, normalize=False
):
yearss = []
words = []
freqss = []
start_year_idx = years.index(start_year)
end_year_idx = years.index(end_year)
for year_idx in range(start_year_idx, end_year_idx + 1):
year = years[year_idx]
year_text = read_text_file(data_path, year)
if normalize:
freqs = find_norm_freq(year_text, n=n, sort=False)
else:
freqs = find_freq(year_text, n=n, sort=False)
for word in selected_ngrams:
yearss.append(year)
words.append(word)
freqss.append(freqs[word] if word in freqs else 0)
frequency_df = pd.DataFrame.from_dict(
{"Year": yearss, "Word": words, "Frequency": freqss}
)
return frequency_df
def get_acceleration_bw_models(
year1, year2, model_path, selected_ngrams, all_model_vectors, top_k_acc
):
model_path1 = os.path.join(model_path, year1 + ".model")
model_path2 = os.path.join(model_path, year2 + ".model")
word_pairs, em1, em2 = compute_acc_between_years(
selected_ngrams,
model_path1,
model_path2,
all_model_vectors=all_model_vectors,
top_k_acc=top_k_acc,
skip_same_word_pairs=True,
skip_duplicates=True,
)
return word_pairs, em1, em2
def get_word_pair_sim_bw_models(
year1, year2, model_path, selected_ngrams, all_model_vectors, top_k_acc
):
word_pairs, em1, em2 = get_acceleration_bw_models(
year1, year2, model_path, selected_ngrams, all_model_vectors, top_k_acc
)
word_pair_sim_df = pd.DataFrame(
list(word_pairs.items()), columns=["Word Pair", "Acceleration"]
)
word_pair_sim_df = word_pair_sim_df.sort_values(by="Acceleration", ascending=False)
word_pair_sim_df_words = []
for word1, word2 in word_pair_sim_df["Word Pair"].values:
if word1 not in word_pair_sim_df_words:
word_pair_sim_df_words.append(word1)
if word2 not in word_pair_sim_df_words:
word_pair_sim_df_words.append(word2)
return word_pair_sim_df, word_pair_sim_df_words
def read_text_file(data_path, name):
with open(os.path.join(data_path, name + ".txt"), encoding="utf-8") as f:
words = f.read()
return words
def get_curve_hull_objects(embeds, labels):
label_to_point_map = {}
for idx, label in enumerate(labels):
if label not in label_to_point_map:
label_to_point_map[label] = [embeds[idx]]
else:
label_to_point_map[label] += [embeds[idx]]
label_to_vertices_map = {}
for label, label_points in label_to_point_map.items():
label_points = np.array(label_points)
hull = ConvexHull(label_points)
vertices = label_points[hull.vertices]
label_to_vertices_map[label] = vertices
return label_to_vertices_map
def create_word_to_entry_dict(word, model_path, sim_dict):
return {
"{}{}".format(word, get_sub(get_tail_from_data_path(model_path))): [
"{}{} ({})".format(
k.split("_")[0],
get_sub(get_tail_from_data_path(k.split("_")[1])),
round(float(sim_dict[k]), 2),
)
for k in sim_dict
]
}
def get_dict_with_new_words(model_paths, selected_ngram, top_k_sim):
sim_dict = compute_similarity_matrix_years(
model_paths, selected_ngram, top_k_sim=top_k_sim
)
return create_word_to_entry_dict(selected_ngram, model_paths[0], sim_dict)
def word_to_entry_dict(word_year, year1, year2, years, stride, top_k_sim, model_path):
# TO-DO: Need better logic here. `eighy-eighty2008` becomes `eightyeight2008`
# TO-DO: `2016a2020` appears as `a`, `20162020`
word_pure = "".join([i for i in word_year if not i.isdigit()]).strip()
year = int(
get_sub("".join([i for i in word_year if i.isdigit()]).strip(), rev=True)
) - int(year1)
if str(year + int(year1)) == year2:
return {}
else:
model_paths = [
os.path.join(model_path, str(yr) + ".model")
for yr in years[year : min(stride + year + 1, len(years))]
]
return get_dict_with_new_words(model_paths, word_pure, top_k_sim)