-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_firms.py
38 lines (33 loc) · 1.14 KB
/
aggregate_firms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""Aggregate scores to firm-year level (optional)
Scores are adjusted by document length (100*score/length)
"""
import global_options
import pandas as pd
from pathlib import Path
print("Aggregating scores to firms and adjusting by document lengths.")
id2firm = pd.read_csv(str(Path(global_options.DATA_FOLDER, "input", "id2firms.csv")))
methods = ["TF", "TFIDF", "WFIDF"]
for method in methods:
scores = pd.read_csv(
str(
Path(global_options.OUTPUT_FOLDER, "scores", "scores_{}.csv".format(method))
)
)
scores = scores.merge(
id2firm, how="left", left_on=["Doc_ID"], right_on="document_id"
).drop(["Doc_ID", "document_id"], axis=1)
for dim in global_options.DIMS:
scores[dim] = 100 * scores[dim] / scores["document_length"]
scores.groupby(["firm_id", "time"]).mean()
scores.sort_values(by=["firm_id", "time"], ascending=[True, True])
scores.to_csv(
str(
Path(
global_options.OUTPUT_FOLDER,
"scores",
"firm_scores_{}.csv".format(method),
)
),
index=False,
float_format="%.4f",
)