-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dict.py
45 lines (39 loc) · 1.38 KB
/
create_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import global_options
import pandas as pd
import pickle
from collections import OrderedDict, Counter
import itertools
from pprint import pprint
import gensim
from culture import culture_dictionary
from pathlib import Path
model = gensim.models.Word2Vec.load(
str(Path(global_options.MODEL_FOLDER, "w2v", "w2v.mod"))
)
vocab_number = len(model.wv.vocab)
print("Vocab size in the w2v model: {}".format(vocab_number))
# expand dictionary
expanded_words = culture_dictionary.expand_words_dimension_mean(
word2vec_model=model,
seed_words=global_options.SEED_WORDS,
restrict=global_options.DICT_RESTRICT_VOCAB,
n=global_options.N_WORDS_DIM,
)
print("Dictionary created. ")
# make sure that one word only loads to one dimension
expanded_words = culture_dictionary.deduplicate_keywords(
word2vec_model=model,
expanded_words=expanded_words,
seed_words=global_options.SEED_WORDS,
)
print("Dictionary deduplicated. ")
# rank the words under each dimension by similarity to the seed words
expanded_words = culture_dictionary.rank_by_sim(
expanded_words, global_options.SEED_WORDS, model
)
# output the dictionary
culture_dictionary.write_dict_to_csv(
culture_dict=expanded_words,
file_name=str(Path(global_options.OUTPUT_FOLDER, "dict", "expanded_dict.csv")),
)
print("Dictionary saved at {}".format(str(Path(global_options.OUTPUT_FOLDER, "dict", "expanded_dict.csv"))))