forked from microsoft/CyberBattleSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotebook_tabularq.py
226 lines (182 loc) · 7.01 KB
/
notebook_tabularq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Tabular Q-learning agent (notebook)
This notebooks can be run directly from VSCode, to generate a
traditional Jupyter Notebook to open in your browser
you can run the VSCode command `Export Currenty Python File As Jupyter Notebook`.
"""
# pylint: disable=invalid-name
# %%
import sys
import logging
from typing import cast
import gym
import numpy as np
import matplotlib.pyplot as plt # type:ignore
from cyberbattle.agents.baseline.learner import TrainedLearner
import cyberbattle.agents.baseline.plotting as p
import cyberbattle.agents.baseline.agent_wrapper as w
import cyberbattle.agents.baseline.agent_tabularqlearning as a
from cyberbattle.agents.baseline.agent_wrapper import Verbosity
import cyberbattle.agents.baseline.learner as learner
from cyberbattle._env.cyberbattle_env import AttackerGoal
logging.basicConfig(stream=sys.stdout, level=logging.ERROR, format="%(levelname)s: %(message)s")
# %%
# Benchmark parameters:
# Parameters from DeepDoubleQ paper
# - learning_rate = 0.00025
# - linear epsilon decay
# - gamma = 0.99
# Eliminated gamma_values
# 0.0,
# 0.0015, # too small
# 0.15, # too big
# 0.25, # too big
# 0.35, # too big
#
# NOTE: Given the relatively low number of training episodes (50,
# a high learning rate of .99 gives better result
# than a lower learning rate of 0.25 (i.e. maximal rewards reached faster on average).
# Ideally we should decay the learning rate just like gamma and train over a
# much larger number of episodes
cyberbattlechain_10 = gym.make('CyberBattleChain-v0', size=10, attacker_goal=AttackerGoal(own_atleast_percent=1.0))
ep = w.EnvironmentBounds.of_identifiers(
maximum_node_count=12,
maximum_total_credentials=12,
identifiers=cyberbattlechain_10.identifiers
)
iteration_count = 9000
training_episode_count = 5
eval_episode_count = 5
gamma_sweep = [
0.015, # about right
]
def qlearning_run(gamma, gym_env):
"""Execute one run of the q-learning algorithm for the
specified gamma value"""
return learner.epsilon_greedy_search(
gym_env,
ep,
a.QTabularLearner(ep, gamma=gamma, learning_rate=0.90, exploit_percentile=100),
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_multdecay=0.75, # 0.999,
epsilon_minimum=0.01,
verbosity=Verbosity.Quiet,
title="Q-learning"
)
# %%
# Run Q-learning with gamma-sweep
qlearning_results = [qlearning_run(gamma, cyberbattlechain_10) for gamma in gamma_sweep]
qlearning_bestrun_10 = qlearning_results[0]
# %%
p.new_plot_loss()
for results in qlearning_results:
p.plot_all_episodes_loss(cast(a.QTabularLearner, results['learner']).loss_qsource.all_episodes, 'Q_source', results['title'])
p.plot_all_episodes_loss(cast(a.QTabularLearner, results['learner']).loss_qattack.all_episodes, 'Q_attack', results['title'])
plt.legend(loc="upper right")
plt.show()
# %% Plot episode length
p.plot_episodes_length(qlearning_results)
# %%
nolearning_results = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=a.QTabularLearner(ep, trained=qlearning_bestrun_10['learner'],
gamma=0.0, learning_rate=0.0, exploit_percentile=100),
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=0.30, # 0.35,
render=False,
title="Exploiting Q-matrix",
verbosity=Verbosity.Quiet
)
# %%
randomlearning_results = learner.epsilon_greedy_search(
cyberbattlechain_10,
ep,
learner=a.QTabularLearner(ep, trained=qlearning_bestrun_10['learner'],
gamma=0.0, learning_rate=0.0, exploit_percentile=100),
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=1.0, # purely random
render=False,
verbosity=Verbosity.Quiet,
title="Random search"
)
# %%
# Plot averaged cumulative rewards for Q-learning vs Random vs Q-Exploit
all_runs = [*qlearning_results,
randomlearning_results,
nolearning_results
]
Q_source_10 = cast(a.QTabularLearner, qlearning_bestrun_10['learner']).qsource
Q_attack_10 = cast(a.QTabularLearner, qlearning_bestrun_10['learner']).qattack
p.plot_averaged_cummulative_rewards(
all_runs=all_runs,
title=f'Benchmark -- max_nodes={ep.maximum_node_count}, episodes={eval_episode_count},\n'
f'dimension={Q_source_10.state_space.flat_size()}x{Q_source_10.action_space.flat_size()}, '
f'{Q_attack_10.state_space.flat_size()}x{Q_attack_10.action_space.flat_size()}\n'
f'Q1={[f.name() for f in Q_source_10.state_space.feature_selection]} '
f'-> {[f.name() for f in Q_source_10.action_space.feature_selection]})\n'
f"Q2={[f.name() for f in Q_attack_10.state_space.feature_selection]} -> 'action'")
# %%
# plot cumulative rewards for all episodes
p.plot_all_episodes(qlearning_results[0])
# %%
# Plot the Q-matrices
# %%
# Print non-zero coordinate in the Q matrix Q_source
i = np.where(Q_source_10.qm)
q = Q_source_10.qm[i]
list(zip(np.array([Q_source_10.state_space.pretty_print(i) for i in i[0]]),
np.array([Q_source_10.action_space.pretty_print(i) for i in i[1]]), q))
# %%
# Print non-zero coordinate in the Q matrix Q_attack
i2 = np.where(Q_attack_10.qm)
q2 = Q_attack_10.qm[i2]
list(zip([Q_attack_10.state_space.pretty_print(i) for i in i2[0]],
[Q_attack_10.action_space.pretty_print(i) for i in i2[1]], q2))
##################################################
# %% [markdown]
# ## Transfer learning from size 4 to size 10
# Exploiting Q-matrix learned from a different network.
# %%
# Train Q-matrix on CyberBattle network of size 4
cyberbattlechain_4 = gym.make('CyberBattleChain-v0', size=4,
attacker_goal=AttackerGoal(own_atleast_percent=1.0)
)
qlearning_bestrun_4 = qlearning_run(0.015, gym_env=cyberbattlechain_4)
def stop_learning(trained_learner):
return TrainedLearner(
learner=a.QTabularLearner(
ep,
gamma=0.0,
learning_rate=0.0,
exploit_percentile=0,
trained=trained_learner['learner']
),
title=trained_learner['title'],
trained_on=trained_learner['trained_on'],
all_episodes_rewards=trained_learner['all_episodes_rewards'],
all_episodes_availability=trained_learner['all_episodes_availability']
)
learner.transfer_learning_evaluation(
environment_properties=ep,
trained_learner=stop_learning(qlearning_bestrun_4),
eval_env=cyberbattlechain_10,
eval_epsilon=0.5, # alternate with exploration to help generalization to bigger network
eval_episode_count=eval_episode_count,
iteration_count=iteration_count
)
learner.transfer_learning_evaluation(
environment_properties=ep,
trained_learner=stop_learning(qlearning_bestrun_10),
eval_env=cyberbattlechain_4,
eval_epsilon=0.5,
eval_episode_count=eval_episode_count,
iteration_count=iteration_count
)
# %%