diff --git a/plugins/matplotlib/.CHECKSUM b/plugins/matplotlib/.CHECKSUM deleted file mode 100644 index 6bbdfaabd9..0000000000 --- a/plugins/matplotlib/.CHECKSUM +++ /dev/null @@ -1,31 +0,0 @@ -{ - "spec": "a08b2fe669cda4852e9518a47ad56982", - "manifest": "615cde7003c2d075e5803e4e076d1cd3", - "setup": "f2d218b8d7db702e36f203a43d524438", - "schemas": [ - { - "identifier": "create_distribution_plot/schema.py", - "hash": "e935f247ea65f88d53c8ffc53e44e3ef" - }, - { - "identifier": "create_joint_plot/schema.py", - "hash": "eae8a3f2db5a56b9720d75abf7c2c460" - }, - { - "identifier": "create_line_plot/schema.py", - "hash": "fec3f1c55443414e0e1eefb4e045fe58" - }, - { - "identifier": "create_pair_plot/schema.py", - "hash": "53bebfa27e5fd8d20c31e87396e72962" - }, - { - "identifier": "create_scatter_plot/schema.py", - "hash": "32553e9f1b62a73e3de638e6ce16b492" - }, - { - "identifier": "connection/schema.py", - "hash": "bd524b567f9638ba1c6f7e0c9e45ff2e" - } - ] -} \ No newline at end of file diff --git a/plugins/matplotlib/.dockerignore b/plugins/matplotlib/.dockerignore deleted file mode 100644 index 93dc53fb01..0000000000 --- a/plugins/matplotlib/.dockerignore +++ /dev/null @@ -1,9 +0,0 @@ -unit_test/**/* -unit_test -examples/**/* -examples -tests -tests/**/* -**/*.json -**/*.tar -**/*.gz \ No newline at end of file diff --git a/plugins/matplotlib/Dockerfile b/plugins/matplotlib/Dockerfile deleted file mode 100755 index f3662dc88f..0000000000 --- a/plugins/matplotlib/Dockerfile +++ /dev/null @@ -1,20 +0,0 @@ -FROM rapid7/insightconnect-python-3-38-plugin:4 - -LABEL organization=rapid7 -LABEL sdk=python - -WORKDIR /python/src - -ADD ./plugin.spec.yaml /plugin.spec.yaml -ADD ./requirements.txt /python/src/requirements.txt - -RUN if [ -f requirements.txt ]; then pip install -r requirements.txt; fi - -ADD . /python/src - -RUN python setup.py build && python setup.py install - -# User to run plugin code. The two supported users are: root, nobody -USER nobody - -ENTRYPOINT ["/usr/local/bin/komand_matplotlib"] diff --git a/plugins/matplotlib/Makefile b/plugins/matplotlib/Makefile deleted file mode 100755 index cb85f96b6c..0000000000 --- a/plugins/matplotlib/Makefile +++ /dev/null @@ -1,53 +0,0 @@ -# Include other Makefiles for improved functionality -INCLUDE_DIR = ../../tools/Makefiles -MAKEFILES := $(wildcard $(INCLUDE_DIR)/*.mk) -# We can't guarantee customers will have the include files -# - prefix to ignore Makefiles when not present -# https://www.gnu.org/software/make/manual/html_node/Include.html --include $(MAKEFILES) - -ifneq ($(MAKEFILES),) - $(info [$(YELLOW)*$(NORMAL)] Use ``make menu`` for available targets) - $(info [$(YELLOW)*$(NORMAL)] Including available Makefiles: $(MAKEFILES)) - $(info --) -else - $(warning Makefile includes directory not present: $(INCLUDE_DIR)) -endif - -VERSION?=$(shell grep '^version: ' plugin.spec.yaml | sed 's/version: //') -NAME?=$(shell grep '^name: ' plugin.spec.yaml | sed 's/name: //') -VENDOR?=$(shell grep '^vendor: ' plugin.spec.yaml | sed 's/vendor: //') -CWD?=$(shell basename $(PWD)) -_NAME?=$(shell echo $(NAME) | awk '{ print toupper(substr($$0,1,1)) tolower(substr($$0,2)) }') -PKG=$(VENDOR)-$(NAME)-$(VERSION).tar.gz - -# Set default target explicitly. Make's default behavior is the first target in the Makefile. -# We don't want that behavior due to includes which are read first -.DEFAULT_GOAL := default # Make >= v3.80 (make -version) - - -default: image tarball - -tarball: - $(info [$(YELLOW)*$(NORMAL)] Creating plugin tarball) - rm -rf build - rm -rf $(PKG) - tar -cvzf $(PKG) --exclude=$(PKG) --exclude=tests --exclude=run.sh * - -image: - $(info [$(YELLOW)*$(NORMAL)] Building plugin image) - docker build --pull -t $(VENDOR)/$(NAME):$(VERSION) . - docker tag $(VENDOR)/$(NAME):$(VERSION) $(VENDOR)/$(NAME):latest - -regenerate: - $(info [$(YELLOW)*$(NORMAL)] Regenerating schema from plugin.spec.yaml) - icon-plugin generate python --regenerate - -export: image - $(info [$(YELLOW)*$(NORMAL)] Exporting docker image) - @printf "\n ---> Exporting Docker image to ./$(VENDOR)_$(NAME)_$(VERSION).tar\n" - @docker save $(VENDOR)/$(NAME):$(VERSION) | gzip > $(VENDOR)_$(NAME)_$(VERSION).tar - -# Make will not run a target if a file of the same name exists unless setting phony targets -# https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html -.PHONY: default tarball image regenerate diff --git a/plugins/matplotlib/bin/komand_matplotlib b/plugins/matplotlib/bin/komand_matplotlib deleted file mode 100755 index 97be0466a5..0000000000 --- a/plugins/matplotlib/bin/komand_matplotlib +++ /dev/null @@ -1,54 +0,0 @@ -#!/usr/bin/env python -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import os -import json -from sys import argv - -Name = "Matplotlib" -Vendor = "rapid7" -Version = "1.0.3" -Description = "Provides graphing capability of base64 encoded CSV data using Matplotlib, NumPy, Pandas, and Seaborn" - - -def main(): - if 'http' in argv: - if os.environ.get("GUNICORN_CONFIG_FILE"): - with open(os.environ.get("GUNICORN_CONFIG_FILE")) as gf: - gunicorn_cfg = json.load(gf) - if gunicorn_cfg.get("worker_class", "sync") == "gevent": - from gevent import monkey - monkey.patch_all() - elif 'gevent' in argv: - from gevent import monkey - monkey.patch_all() - - import insightconnect_plugin_runtime - from komand_matplotlib import connection, actions, triggers, tasks - - class ICONMatplotlib(insightconnect_plugin_runtime.Plugin): - def __init__(self): - super(self.__class__, self).__init__( - name=Name, - vendor=Vendor, - version=Version, - description=Description, - connection=connection.Connection() - ) - self.add_action(actions.CreateLinePlot()) - - self.add_action(actions.CreateScatterPlot()) - - self.add_action(actions.CreateDistributionPlot()) - - self.add_action(actions.CreateJointPlot()) - - self.add_action(actions.CreatePairPlot()) - - - """Run plugin""" - cli = insightconnect_plugin_runtime.CLI(ICONMatplotlib()) - cli.run() - - -if __name__ == "__main__": - main() diff --git a/plugins/matplotlib/extension.png b/plugins/matplotlib/extension.png deleted file mode 100644 index 3a114ecfad..0000000000 Binary files a/plugins/matplotlib/extension.png and /dev/null differ diff --git a/plugins/matplotlib/help.md b/plugins/matplotlib/help.md deleted file mode 100644 index af4b7f5875..0000000000 --- a/plugins/matplotlib/help.md +++ /dev/null @@ -1,271 +0,0 @@ -# Description - -[Matplotlib](https://matplotlib.org/) is a Python 2D plotting library which produces publication quality -figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in -Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and four graphical user -interface toolkits. The Matploitlib plugin provides graphing capability of Base64 encoded CSV data using Matplotlib, -NumPy, Pandas, and Seaborn, utilizing the [matplotlib API](https://matplotlib.org/api/index.html). - -# Key Features - -* Plotting data from Excel files - -# Requirements - -_This plugin does not contain any requirements._ - -# Supported Product Versions - -* Matplotlib 3.0.1 - -# Documentation - -## Setup - -_This plugin does not contain a connection._ - -## Technical Details - -### Actions - -#### Create Line Plot - -This action is used to create a line plot with an X/Y axis: [https://seaborn.pydata.org/generated/seaborn.lineplot.html#seaborn.lineplot](https://seaborn.pydata.org/generated/seaborn.lineplot.html#seaborn.lineplot). - -##### Input - -|Name|Type|Default|Required|Description|Enum|Example| -|----|----|-------|--------|-----------|----|-------| -|color_palette|string|dark|True|Color palette of the plot|['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']|dark| -|csv_data|bytes|None|True|Base64 encoded CSV data from which to create the plot|None|UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==| -|hue|string|None|False|Column by which to provide data segmentation (labels)|None|ExampleColumnName| -|margin_style|string|dark|True|Style of the margin of the plot|['darkgrid', 'whitegrid', 'dark', 'white', 'ticks']|dark| -|x_value|string|None|True|Column containing values for the X-axis of the plot|None|ExampleColumnName| -|y_value|string|None|True|Column containing values for the Y-axis of the plot|None|ExampleColumnName| - -Example input: - -``` -{ - "color_palette": "dark", - "csv_data": "UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==", - "hue": "ExampleColumnName", - "margin_style": "dark", - "x_value": "ExampleColumnName", - "y_value": "ExampleColumnName" -} -``` - -##### Output - -|Name|Type|Required|Description|Example| -|----|----|--------|-----------|-------| -|csv|bytes|True|Base64 encoded CSV data used to generate the plot|c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK| -|plot|bytes|True|Base64 encoded PNG plot data (can be attached to an email)|iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==| - -Example output: - -``` -{ - "csv": "c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK", - "plot": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==" -} -``` - -#### Create Scatter Plot - -This action is used to create a scatter plot with an X/Y axis: [https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot](https://seaborn.pydata.org/generated/seaborn.scatterplot.html#seaborn.scatterplot). - -##### Input - -|Name|Type|Default|Required|Description|Enum|Example| -|----|----|-------|--------|-----------|----|-------| -|color_palette|string|dark|True|Color palette of the plot|['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']|dark| -|csv_data|bytes|None|True|Base64 encoded CSV data from which to create the plot|None|UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==| -|hue|string|None|False|Column by which to provide data segmentation (labels)|None|ExampleColumnName| -|margin_style|string|dark|True|Style of the margin of the plot|['darkgrid', 'whitegrid', 'dark', 'white', 'ticks']|dark| -|x_value|string|None|True|Column containing values for the X-axis of the plot|None|ExampleColumnName| -|y_value|string|None|True|Column containing values for the Y-axis of the plot|None|ExampleColumnName| - -Example input: - -``` -{ - "color_palette": "dark", - "csv_data": "UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==", - "hue": "ExampleColumnName", - "margin_style": "dark", - "x_value": "ExampleColumnName", - "y_value": "ExampleColumnName" -} -``` - -##### Output - -|Name|Type|Required|Description|Example| -|----|----|--------|-----------|-------| -|csv|bytes|True|Base64 encoded CSV data used to generate the plot|c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK| -|plot|bytes|True|Base64 encoded PNG plot data (can be attached to an email)|iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==| - -Example output: - -``` -{ - "csv": "c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK", - "plot": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt0VPW9///XnplMMiQkIZyIAVEy0UJ6hBIUlSYEERGIFttj+wMOokik2goIyloqokbLOagH0AJqQ4h4OV7BXhQCcpUYjMe2kJ6vchMyYBQBWyQ3JpmZZH5/5GSXYYJcJshO8nysxYqz93t/9iezXIsXn70/n48RDAaDAgAAgGXYzncHAAAAEIqABgAAYDEENAAAAIshoAEAAFgMAQ0AAMBiCGgAAAAWQ0ADAACwGAIaAACAxRDQAAAALIaABgAAYDEENAAAAIshoAEAAFgMAQ0AAMBiCGgAAAAWQ0ADAACwGMf57gBOLRgMqrExeL67AQAATpPNZsgwjLO+noDWBjQ2BnXkSO357gYAADhNSUmxstvPPqDxiBMAAMBiCGgAAAAWQ0ADAACwGEsFtM2bN+vWW2/VNddco8svv1zDhg3T3LlzVV1dHVK3ceNGjR49Wn379tWIESP0zjvvhLXl8/n01FNPKTMzU/3799cdd9yh8vLysLq9e/fqjjvuUP/+/ZWZmamnn35aPp8vrG758uUaMWKE+vbtq9GjR2vTpk1hNdXV1Zo1a5auuuoqZWRkaNq0aTp8+HAE3wgAAOiILBXQjh49qn79+unxxx9XYWGh7rjjDv3xj3/Uvffea9b85S9/0ZQpU9S/f38VFBRo1KhRevjhh7VmzZqQtubMmaPly5drxowZWrRokXw+nyZOnBgS9iorK3X77bfL7/dr0aJFmjFjht5++209+eSTIW2tWrVKjzzyiEaNGqWCggL1799fU6ZMUVlZWUjd9OnTtWXLFuXl5WnevHnyeDyaPHmyAoHAOfi2AABAe2UEg0FLr9/w9ttv65FHHlFxcbG6deum3Nxc1dbW6s033zRr7r//fu3YsUNFRUWSpIMHD+q6667TY489pjFjxkhqCn9Dhw7Vr3/9a02ePFmSlJ+fr9/97nfatGmTEhMTJUlvvfWWHn/8cW3atEndunWTJI0YMUKXX3655s+fb95z7Nix6ty5swoKCiRJ27Zt09ixY1VYWKisrCxJUnl5uXJycrRgwQLl5OSc9XfQ0NDILE4AANqQplmcZz8OZqkRtJY0Bye/3y+fz6f/+Z//0ciRI0NqcnJytHfvXn355ZeSpJKSEjU2NobUJSYmKjMzU8XFxeax4uJiDRo0yLyHJI0aNUqNjY3asmWLJKmiokL79u3TqFGjwu5ZWlpqPg4tLi5WfHy8MjMzzRq326309PSQewIAAJyKJQNaQ0OD6uvr9dlnn+m5557Tddddp4suukhffPGF/H6/3G53SH1aWpokme+YlZeXq2vXrkpISAirO/49tPLy8rC24uPjlZycHNKWJKWmpoa15ff7VVFRYdalpqaGLUrndrtbfPcNAADgZCy5UO3QoUN16NAhSdLgwYPNR4uVlZWSmkLU8Zo/N5+vqqpS586dw9qNj483a5rrTmxLkhISEsy6SO+ZkJCgTz/99Dt/XwAAgONZMqAtWbJEXq9Xe/bs0QsvvKC7775by5YtO9/dAgAAbYhhGLLZDDU2BmXxV+7DWDKg9enTR5KUkZGhvn376uabb9a6det06aWXSlLYshtVVVWSZD7SjI+PV01NTVi7VVVVIY894+Pjw9qSmkbFmuuaf1ZXVys5Ofk773nw4MHvbAsAAJx7drtNUU6HYmIcqvH6leCKkrcuoIAvoIaGxvPdvdNiyXfQjte7d29FRUXpiy++0MUXX6yoqKiwd7qaPze/T+Z2u/X3v/895HFmc93x75y19H5YdXW1vvnmm5C2jr/H8W1FRUWpZ8+eZp3H4wlL6B6PJ+w9NwAAcG7Y7TbFxkXr3RKPJuS9r9vy3teEvPe1cotHsXHREc2s/D5Zvpd/+9vf5Pf7ddFFF8npdOrqq6/W+++/H1JTVFSktLQ0XXTRRZKkrKws2Ww2rV271qyprKxUSUmJsrOzzWPZ2dn66KOPzNEwSVqzZo1sNps5G7Nnz57q1atX2DprRUVFGjRokJxOp9lWZWWlSktLzRqPx6Pt27eH3BMAAJw7UU6HVmzcozfX7VKt1y9JqvX69cbaXXpn0x45nJZ8eBjGnpeXl3e+O9FsypQp+uKLL1RdXa2DBw9q/fr1+o//+A/17NlTDz74oOx2u3r06KEXXnhB33zzjVwul37/+9/rtdde06OPPqrLLrtMkhQXF6dDhw7p5ZdfVteuXXXkyBH95je/kdfr1dy5cxUdHS1Juuyyy7R8+XJ99NFHuuCCC/TnP/9ZTz31lG655RbdeOONZr+6dOmixYsXq7GxaVi0oKBAmzZt0ty5c5WSkiJJSklJUVlZmVasWKFu3bqpoqJCjz32mJKTkzVr1izZbGefhYPBoLz/9z8ZAABomWEYiouL1pOv/EX+QPijTM+BKv1/1/9A9fXnfgF5l8spm804deFJWGqh2iVLlqioqEhffPGFgsGgevTooeHDhys3N1dxcXFm3YYNG/Tss8/K4/Goe/fu+uUvf6mf//znIW35fD4988wz+tOf/qTa2loNGDBAs2fPNpfkaLZ371795je/0bZt2xQbG6ubb75ZM2bMMEfGmi1fvlwFBQU6cOCAUlNTdd9992no0KEhNdXV1Zo7d67WrVunQCCgrKwszZ4921zw9myxUC0AAKdmt9tkRNl1W977J615NW+kGv3n/l20SBeqtVRAQ8sIaAAAnJphGEpIdGlC3vvm483jxbqi9GreCFUe9Z7zWZ3tficBAACA0xEMBlVXF9DowS1Pzhs92C1vXaBNLLnRNt6UAwAAOA1+X0C3DG1aluvdD8tV6/Ur1hWl0YPdumXopaqtqT/PPTw9POJsA3jECQDA6bPbbXI4HXLFOFTrDSjW5fje10GL9BEnI2gAAKBdaWhoVIPXJ1+dXzabocp6f5t4rHk8AhoAAGiXgsGgGhraVjBrxiQBAAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWIylAtrq1av1q1/9StnZ2erfv79uvvlmrVixQsFg0KyZMGGCevfuHfZn7969IW1VV1dr1qxZuuqqq5SRkaFp06bp8OHDYffcunWrxowZo379+mno0KFasmRJyP0kKRgMasmSJbr22mvVr18/jRkzRmVlZWFtHTp0SFOnTlVGRoauuuoqPfzww6qpqWmlbwcAAHQURvDENHIejRkzRj169ND111+vLl266KOPPtLSpUt1zz33aMqUKZKaAlogENADDzwQcm16erqio6PNz7m5udqzZ48eeOABRUdH69lnn5XNZtM777wjh8MhSdq/f79++tOfKjMzU+PHj9euXbs0b948zZgxQ7m5uWZbS5Ys0cKFCzVz5kz17t1br732mj766CP96U9/Us+ePSVJfr9f//Zv/yZJmjFjhurq6vTUU0+pT58+ys/Pj+h7aWho1JEjtRG1AQAAvj9JSbGy289+HMzRin2J2AsvvKCkpCTz86BBg3T06FEtW7ZMv/71r2WzNf2i8fHx6t+//0nb2bZtm0pKSlRYWKisrCxJUmpqqnJycrR27Vrl5ORIkgoLC9WlSxctWLBATqdTgwYN0pEjR/S73/1OEyZMkNPpVH19vfLz8zVp0iRNnDhRknTFFVdo5MiRKiwsVF5eniTp/fff1+eff66ioiK53W6zn7m5ufrf//1f9evXr7W/LgAA0E5Z6hHn8eGsWXp6umpqanTs2LHTbqe4uFjx8fHKzMw0j7ndbqWnp6u4uDikbtiwYXI6neaxnJwcVVVVadu2bZKaHoHW1NRo1KhRZo3T6dTw4cPD2urdu7cZziQpMzNTiYmJ2rx582n3HQAAwFIBrSV//etf1a1bN8XFxZnHPvnkE/Xv3199+/bVrbfeqj//+c8h15SXlys1NVWGYYQcd7vdKi8vlyQdO3ZMX3/9dUigaq4xDMOsa/55Yl1aWpoOHDiguro6s+7EGsMwlJqaarYBAABwOiwd0P7yl7+oqKhIkyZNMo8NHDhQDz/8sJYuXaqnnnpKXq9Xd9xxhzniJUlVVVXq3LlzWHsJCQmqrKyU1DSJQGp6DHk8p9Mpl8tl1lVVVcnpdIa839Z8XTAYDKk71T0BAABOh6XeQTvewYMHNWPGDF199dW67bbbzOPTpk0Lqbv22mt100036fnnn1dBQcH33U0AAIBWZ8kRtKqqKk2ePFmJiYlatGiROTmgJZ06ddKQIUP02Wefmcfi4+NbXN6isrJSCQkJkmSOdjWPpDXz+Xzyer1mXXx8vHw+n+rr68P6aBhGSN2p7gkAAHA6LBfQ6urqdNddd6m6ulpLly5t8bHhqbjdbnk8nrD1zDwej/meWKdOnZSSkhL2fljzdc11zT89Hk9IXXl5ubp3766YmBiz7sS2gsFgyD0BAABOh6UCWiAQ0PTp01VeXq6lS5eqW7dup7zm2LFj+uCDD9S3b1/zWHZ2tiorK1VaWmoe83g82r59u7Kzs0PqNmzYIL/fbx4rKipSfHy8MjIyJEkDBgxQXFycVq9ebdb4/X6tXbs2rK2dO3dq37595rHS0lIdPXpUQ4YMObMvAgAAdGj2vOaFvCzgscce06pVqzR9+nR17dpVBw8eNP8kJSVp27ZteuKJJ1RfX6+qqipt3bpVjzzyiCoqKvTUU0+ZgS4lJUVlZWVasWKFunXrpoqKCj322GNKTk7WrFmzzEembrdby5Yt086dO5WYmKiNGzdq8eLFmjp1qgYOHChJcjgcMgxD+fn5io2Nldfr1fz587V79249/fTT5uPL1NRUrV+/XqtXr1ZKSop27NihJ554QldeeaXuvPPOiL6XYDAor9d/6kIAAGAJLpdTNptx6sKTsNROAtddd52++uqrFs9t2LBBDQ0NeuKJJ7Rr1y4dPXpULpdLGRkZmjJlSthCsNXV1Zo7d67WrVunQCCgrKwszZ49O2xUbuvWrXryySe1Y8cOJSUlafz48Zo8eXLIEh3NWz29/vrrOnLkiNLT0/XQQw+Zo2zNDh06pDlz5qikpEQOh0PDhw/XrFmzQpYIORvsJAAAQNsS6U4ClgpoaBkBDQCAtiXSgGapd9AAAABAQAMAALAcAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFENAAAAAshoAGAABgMQQ0AAAAiyGgAQAAWIylAtrq1av1q1/9StnZ2erfv79uvvlmrVixQsFgMKRu+fLlGjFihPr27avRo0dr06ZNYW1VV1dr1qxZuuqqq5SRkaFp06bp8OHDYXVbt27VmDFj1K9fPw0dOlRLliwJu18wGNSSJUt07bXXql+/fhozZozKysrC2jp06JCmTp2qjIwMXXXVVXr44YdVU1MT4bcCAAA6GksFtJdeekkul0sPPvigXnjhBWVnZ+uRRx7Rc889Z9asWrVKjzzyiEaNGqWCggL1799fU6ZMCQtM06dP15YtW5SXl6d58+bJ4/Fo8uTJCgQCZs3+/fuVm5ur5ORk5efn6/bbb9fChQv14osvhrRVUFCghQsXauLEicrPz1dycrImTZqkiooKs8bv9+vOO+/Uvn37NH/+fOXl5amkpET333//Ofq2AABAe2UETxwuOo+OHDmipKSkkGOPPPKIioqK9Oc//1k2m00jRozQ5Zdfrvnz55s1Y8eOVefOnVVQUCBJ2rZtm8aOHavCwkJlZWVJksrLy5WTk6MFCxYoJydHkvToo4+qpKREa9askdPplCQtWLBAb7zxhrZs2SKn06n6+nr9+Mc/1vjx43XfffdJknw+n0aOHKns7Gzl5eVJklauXKmZM2eqqKhIbrdbklRSUqLc3FwtX75c/fr1O+vvpaGhUUeO1J719QAA4PuVlBQru/3sx8EsNYJ2YjiTpPT0dNXU1OjYsWOqqKjQvn37NGrUqJCanJwclZaWyufzSZKKi4sVHx+vzMxMs8btdis9PV3FxcXmseLiYg0bNswMZ81tVVVVadu2bZKaHoHW1NSE3NPpdGr48OFhbfXu3dsMZ5KUmZmpxMREbd68+Wy/EgAA0AFZKqC15K9//au6deumuLg4lZeXS5JSU1NDatLS0uT3+81HjuXl5UpNTZVhGCF1brfbbOPYsWP6+uuvQwJVc41hGGZd888T69LS0nTgwAHV1dWZdSfWGIah1NRUsw0AAIDT4Yjk4mAwqLfeeksrVqxQRUWFqqqqwmoMw9D27dvPqv2//OUvKioq0gMPPCBJqqyslCTFx8eH1DV/bj5fVVWlzp07h7WXkJCgTz/9VFLTJIKW2nI6nXK5XCFtOZ1ORUdHh90zGAyqsrJSMTEx33nP5rYAAABOR0QB7emnn9ZLL72k9PR0jR49WgkJCa3VLx08eFAzZszQ1Vdfrdtuu63V2gUAALC6iALaH//4R91www367W9/21r9kdQ0ajV58mQlJiZq0aJFstmansQ2B8Dq6molJyeH1B9/Pj4+XgcPHgxrt7Ky0qxpHu1qHklr5vP55PV6Q9ry+Xyqr68PGUWrqqqSYRghdS0tqVFZWamUlJSz+BYAAEBHFdE7aHV1dfrxj3/cWn0x27zrrrtUXV2tpUuXhjw2bH7H68R3usrLyxUVFaWePXuadR6PJ2w9M4/HY7bRqVMnpaSkhLXVfF1zXfNPj8cTds/u3bsrJibGrDuxrWAwGHJPAACA0xFRQBs0aJD+3//7f63VFwUCAU2fPl3l5eVaunSpunXrFnK+Z8+e6tWrl9asWRNyvKioSIMGDTJnY2ZnZ6uyslKlpaVmjcfj0fbt25WdnW0ey87O1oYNG+T3+0Paio+PV0ZGhiRpwIABiouL0+rVq80av9+vtWvXhrW1c+dO7du3zzxWWlqqo0ePasiQIRF8KwAA4FwwDEN2uy1sUqEV2POaF/I6C1deeaUKCgpUVVWltLQ0uVyuiDrz2GOPadWqVZo+fbq6du2qgwcPmn+SkpJkt9vVpUsXLV68WI2NjZKaFpHdtGmT5s6daz5KTElJUVlZmVasWKFu3bqpoqJCjz32mJKTkzVr1izzkanb7dayZcu0c+dOJSYmauPGjVq8eLGmTp2qgQMHSpIcDocMw1B+fr5iY2Pl9Xo1f/587d69W08//bT5iDM1NVXr16/X6tWrlZKSoh07duiJJ57QlVdeqTvvvDOi7yUYDMrr9Z+6EAAAnJLdblN0TJTi4qLlbwwqvnO0goYhBYNhT9/OlsvllM129sEvooVqMzIyFAwGVV9fL0mKjo42w495A8PQX//619Nq77rrrtNXX33V4rkNGzbooosuktS01VNBQYEOHDig1NRU3XfffRo6dGhIfXV1tebOnat169YpEAgoKytLs2fPDhuV27p1q5588knt2LFDSUlJGj9+vCZPnhySppu3enr99dd15MgRpaen66GHHjJH2ZodOnRIc+bMUUlJiRwOh4YPH65Zs2YpLi7utH7/k2GhWgAAWofdblNsXLRWbNyj90rKVev1K9YVpdGD3bpl6KWqralXQ0NjxPeJdKHaiALagw8+eFrDgnPnzj3bW0AENAAAWkuMy6l3Szx6c92usHPjbuitmzJTVe/1RXyf8xrQ8P0goAEAEDnDMJSQ6NKEvPdV28KrQ7GuKL2aN0KVR70RP+psV1s9AQAAnCs2m6Ear7/FcCZJtV6/ar2BiN4day0RrYMmSTU1NXrppZf0wQcf6MCBA5Kk7t2769prr9XEiRMjfv8KAACgNTQ2BpXgilKsK+qkI2ixLocq68//xLyIRtAOHTqkn/70p1q8eLGOHTumAQMGaMCAAfJ6vVq8eLF+9rOf6fDhw63VVwAAgLMWDAZVVxfQ6MEtr086erBb3rpAq83kjEREI2jz5s3T3//+d+Xn54et9bV582ZNnz5d8+fP11NPPRVRJwEAAFqD3xfQLUMvlSS9+2HLszitIKJJAtdcc43GjBmjGTNmtHh+wYIFevvtt/Xxxx+fdQfBJAEAAFqT3W6Tw+mQK8ahWm9AsS6HvHUBBXyBVlliQ4p8kkBEI2her1ddu3Y96fl/+Zd/kdfrjeQWAAAAraqhoVENXp98dX7ZbIYq6/2WeKx5vIjeQUtLS9OqVavk84WvF+L3+7Vq1SqlpaVFcgsAAIBzIhgMqqGh0XLhTIpwBG3y5MmaMWOGfvGLX+jf//3f1atXL0lN+16++eab2rVrl5555pnW6CcAAECHEfFCtb///e81f/58/eMf/zB3FQgGg+ratatmzpypn/3sZ63S0Y6Md9AAAGhbLLGTQCAQ0KeffhqyDtrll18uhyPiZdYgAhoAAG2NJQIazi0CGgAAbcv3Oovzz3/+syRp4MCBIZ9PpbkeAAAAp3ZGI2h9+vSRYRj629/+JqfTaX4+mWAwKMMwtGPHjlbpbEfFCBoAAG3L9zqC9sorr0iSnE5nyGcAAAC0Ht5BawMYQQMAoG2JdAQtooVqb7vtNpWWlp70/Mcff6zbbrstklsAAAB0OBEFtE8++UR///vfT3r+yJEjpz2RAAAAAE0iCmiSvnOSwP79+xUbGxvpLQAAADqUM15J9g9/+IP+8Ic/mJ9feOEFvf3222F11dXV2rVrl7KzsyPrIQAAQAdzxgHN6/Xq22+/NT/X1tbKZgsfiOvUqZPGjh2re+65J7IeAgAAdDARzeK87rrr9PDDD2vYsGGt2SecgFmcAAC0LWz11AEQ0AAAaFvO6zIbH330kRYsWHDS888888x3LsMBAACAcBEFtOeff15ff/31Sc8fOnRIL7zwQiS3AAAA6HAiCmi7d+/Wj370o5Oe79u3r3bt2hXJLQAAADqciAKaz+eT3+//zvN1dXWR3AIAAKDDiSigXXbZZVq3bl2L54LBoNauXau0tLRIbgEAANDhRBTQbr31Vm3dulXTpk3Trl27FAgEFAgEtHPnTt17770qKyvThAkTWquvAAAAHULEy2wsXrxYzz//vILBoLlgbWNjowzD0N13361p06a1Skc7MpbZAACgbbHEOmhffPGF1q1bp4qKCknSxRdfrOuvv14XX3xxpE1DBDQAANoaSwQ0nFsENAAA2pbzulAtAAAAWt8Zb5Z+vD59+sgwjFPW7dixI5LbAAAAdCgRBbR77rknLKA1NDToq6++0vr165WamqqhQ4dG1EEAAICOJqKANnXq1JOeO3z4sMaMGaNevXpFcgsAAIAO55y9g3bBBRdo7Nixev7558/VLQAAANqlczpJwOVy6csvvzyXtwAAAGh3zllA2717t1599VUecQIAAJyhiN5Bu+6661qcxVldXa3q6mrFxMTwiBMAAOAMRRTQrrrqqhYDWkJCgnr27Kkbb7xRiYmJkdwCAACgw2EngTaAnQQAAGhb2EkAAACgnTmjR5yLFy8+4xsYhqF77rnnjK8DAADoqM7oEWefPn3CG/i/d9BObMYwDAWDQRmGwVZPEeIRJwAAbUukjzjPaARt586dIZ8PHTqkX/7yl7rssst0++23KzU1VZJUXl6ul19+WXv37lV+fv5Zdw4AAKAjimiSwK9//Ws5HA4tXLiwxfPTpk1TQ0ODnnvuudNuc//+/SosLNTf/vY3ff7553K73Vq5cmVIzYQJE/TJJ5+EXVtUVKS0tDTzc3V1tebOnav169fL7/dr8ODBmj17ti644IKQ67Zu3aqnnnpKO3bsUNeuXTVu3DhNnjw5ZIZqMBhUQUGBXn/9dR05ckTp6el66KGH1L9//5C2Dh06pDlz5qikpERRUVEaPny4HnroIcXFxZ32d3AiRtAAAGhbzuskgY8//ljXXHPNSc9fc801Ki0tPaM2P//8c23evFmXXHJJSNg60YABA/TWW2+F/LnoootCaqZPn64tW7YoLy9P8+bNk8fj0eTJkxUIBMya/fv3Kzc3V8nJycrPz9ftt9+uhQsX6sUXXwxpq6CgQAsXLtTEiROVn5+v5ORkTZo0SRUVFWaN3+/XnXfeqX379mn+/PnKy8tTSUmJ7r///jP6DgAAQMcW0Tpo0dHRKisr07//+7+3eH7btm2Kjo4+ozavu+46XX/99ZKkBx98UJ9++mmLdfHx8WGjVyfeu6SkRIWFhcrKypIkpaamKicnR2vXrlVOTo4kqbCwUF26dNGCBQvkdDo1aNAgHTlyRL/73e80YcIEOZ1O1dfXKz8/X5MmTdLEiRMlSVdccYVGjhypwsJC5eXlSZLef/99ff755yoqKpLb7Tb7mZubq//93/9Vv379zui7AAAAHVNEI2g/+clP9N5772nOnDnat2+fGhsb1djYqH379uk3v/mNVq5cqZ/85Cdn1iFb66z8UVxcrPj4eGVmZprH3G630tPTVVxcHFI3bNgwOZ1O81hOTo6qqqoAos+/AAAgAElEQVS0bds2SU2PQGtqajRq1Cizxul0avjw4WFt9e7d2wxnkpSZmanExERt3ry5VX4vAADQ/kU0gjZz5kx9++23+u///m+99tprZrhqbGxUMBjUjTfeqJkzZ7ZKR0/0ySefqH///mpoaNCPfvQj3XvvvRo4cKB5vry8XKmpqWE7HbjdbpWXl0uSjh07pq+//jokUDXXGIah8vJyXX311Wb9iXVpaWl6+eWXVVdXp5iYGJWXl4fVGIah1NRUsw0AAIBTiSigOZ1O/dd//Zdyc3O1efNmHThwQJLUo0cPZWdnt7gsR2sYOHCgbr75ZvXq1UuHDx9WYWGh7rjjDr366qvKyMiQJFVVValz585h1yYkJJiPTaurqyU1PYY88fdyuVyqrKw023I6nWGPa+Pj4xUMBlVZWamYmJjvvGdzWwAAAKcSUUBr1qdPn3MWxloybdq0kM/XXnutbrrpJj3//PMqKCj43voBAABwLrTKC19lZWXKz8/Xf/7nf2rfvn2SJK/Xq88++0y1ted+eYhOnTppyJAh+uyzz8xj8fHxqqmpCautrKxUQkKCJJmjXc0jac18Pp+8Xq9ZFx8fL5/Pp/r6+pC6qqoqGYYRUneqewIAAJxKRAHN5/NpypQpGjdunJ555hm9+uqr+vrrr5sattk0adIkvfLKK63S0TPldrvl8XjCdjjweDzme2KdOnVSSkpK2Pthzdc11zX/9Hg8IXXl5eXq3r27YmJizLoT2woGgyH3BAAAOJWIAtpvf/tbffDBB8rLy9OaNWtCwlB0dLRGjhypDRs2RNzJUzl27Jg++OAD9e3b1zyWnZ2tysrKkHXYPB6Ptm/fruzs7JC6DRs2yO/3m8eKiooUHx9vvs82YMAAxcXFafXq1WaN3+/X2rVrw9rauXOnOYooSaWlpTp69KiGDBnSqr8zAABovyJ6B23VqlUaO3asxowZo2+//TbsfFpamtasWXNGbXq9XnNJiq+++ko1NTVmG1dddZXKy8u1dOlSDR8+XD169NDhw4e1bNkyffPNN/rtb39rtpORkaGsrCzNmjVLDzzwgKKjo/XMM8+od+/euuGGG8y63Nxcvffee7r//vs1btw47d69W4WFhZoxY4a59EZ0dLTuuusuLVq0SElJSfrBD36gN954Q0ePHlVubq7Z1ogRI5Sfn6+pU6fqvvvuk9fr1dNPP61rr72WNdAAAMBpiyig/eMf/1Dv3r1Pet5ut6uuru6M27z33ntDjjV/fuWVV3ThhRfK7/frmWee0dGjR+VyuZSRkaHHH388LAQ9++yzmjt3rh599FEFAgFlZWVp9uzZcjj++WtfcsklKiws1JNPPqlf/vKXSkpK0rRp0zRp0qSQtiZPnqxgMKgXX3zR3OqpsLBQPXv2NGuioqK0dOlSzZkzR/fdd58cDoeGDx+uWbNmndF3AAAAOraI9uK84YYbNGzYMD3wwAP69ttvNWjQIC1btkyDBg2SJN1///3avXu33nvvvVbrcEfEXpwAALQt53UvzptuuklvvvmmueK+JHNh2LffflurV6/WT3/600huAQAA0OFENILm8/n0q1/9Sh9//LHcbrf27NmjH/zgB6qsrNTBgwc1ZMgQPf/887Lb7a3Z5w6HETQAANqWSEfQIgpoUtMyEu+++67ef/997d+/X42Njbr44os1atQo3XzzzWFbLeHMEdAAAGhbzltA8/v92rt3rxITE3XhhReedQdwagQ0AADalvP2DprNZtMtt9yitWvXnvXNAQAAEO6sA5rdblf37t3l8/lasz8AAAAdXkSzOG+99Va9/fbbOnr0aGv1BwAAoMOLaKHaxsZGOZ1ODR8+XCNGjFCPHj3MfSmbGYahiRMnRnIbAACADiWiWZx9+vQ59Q0MQzt27DjbW0BMEgAAoK2JdJJARCNo38dG6AAAAB1NRAGtR48eZ1R/7Ngxvfjii/rpT3+qiy66KJJbAwAAtFsRTRI4U8eOHdNzzz2nioqK7/O2AAAAbcr3GtCkpp0HAAAAcHLfe0ADAADAdyOgAQAAWAwBDQAAwGIIaAAAABZDQAMAALAYAhoAAIDFRBTQysrKTlnz+uuvm/+dlJSkDRs26IorrojktgAAAO1aRAFt8uTJ+uyzz056Pj8/X7/5zW/+eTObTT169JDT6YzktgAAAO1aRAFtwIABmjRpknbt2hV2bv78+XrmmWeUm5sbyS0AAAA6nIgC2qJFi/Sv//qvuuOOO7R3717z+OOPP66CggLNmDFDM2fOjLiTAAAAHYkRjHDvpfr6et15553yeDx66aWXlJ+fr5UrV2r27NkaP358a/WzQ2toaNSRI7XnuxsAAOA0JSXFym4/+3GwiAOa1LQJ+qRJk/Tpp59Kkv7jP/5DN998c6TN4v8Q0AAAaFsiDWiOMyleu3btSc/9/Oc/1+7du3X99dfL5XKF1N5www1n3UEAAICO5oxG0Pr06SPDMNTSJd91fMeOHZH1soNjBA0AgLblex1Be+WVV876RgAAADg9rfIOGs4tRtAAAGhbvtcRtNMRDAb18ccfy+fz6YorrlBcXFxr3wIAAKBdiyigPfPMM9q6dateffVVSU3hbNKkSfr4448VDAbVvXt3vfTSS7r44otbpbMAAAAdQUQL1b7//vvq16+f+XnNmjUqLS3V9OnTlZ+fr4aGBi1atCjiTgIAAHQkEY2gHTp0SJdccon5ed26dbr00kt11113SZLGjRunN954I7IeAgAAdDARjaA5HA75fD5JTY83S0tLNXjwYPN8165d9e2330bWQwAAgA4mooB22WWX6d1331VlZaXeeecdHT16VEOGDDHPHzhwQF26dIm4kwAAAB1JRI8477nnHt1999265pprJEkDBgww/1uSNm/erL59+0bWQwAAgA4mooCWmZmpP/zhD9qyZYvi4+OVk5NjnqusrNSVV16pYcOGRdxJAACAjoSFatsAFqoFAKBtiXSh2ojeQQMAAEDrO6NHnH369JHNZlNZWZmcTqe5efp3MQxD27dvj6iTAAAAHckZBbR77rlHhmHI4Wi6bMqUKeekUwAAAB3ZWb+D5vV6NX78eP3iF7/QuHHjWrtfOA7voAEA0Lact3fQXC6Xvvzyy1M+4gQAAMCZiWiSwODBg1VSUtJafQEAAIAiXGZj7969uvfee5Wenq4xY8aoZ8+eio6ODqtLTEyMqJMdHY84AQBoWyJ9xBlRQOvTp88/G/qOR507duw421tABDQAANqaSANaxFs98Q4aAABA67LcTgL79+9XYWGh/va3v+nzzz+X2+3WypUrw+qWL1+upUuX6sCBA0pNTdWMGTM0dOjQkJrq6mrNnTtX69evl9/v1+DBgzV79mxdcMEFIXVbt27VU089pR07dqhr164aN26cJk+eHBI+g8GgCgoK9Prrr+vIkSNKT0/XQw89pP79+4e0dejQIc2ZM0clJSWKiorS8OHD9dBDDykuLu6svxNG0AAAaFva3U4Cn3/+uTZv3qxLLrlEaWlpLdasWrVKjzzyiEaNGqWCggL1799fU6ZMUVlZWUjd9OnTtWXLFuXl5WnevHnyeDyaPHmyAoGAWbN//37l5uYqOTlZ+fn5uv3227Vw4UK9+OKLIW0VFBRo4cKFmjhxovLz85WcnKxJkyapoqLCrPH7/brzzju1b98+zZ8/X3l5eSopKdH999/fit8QAABo7yw3gtbY2CibrSk3Pvjgg/r000/DRtBGjBihyy+/XPPnzzePjR07Vp07d1ZBQYEkadu2bRo7dqwKCwuVlZUlSSovL1dOTo4WLFhgbuz+6KOPqqSkRGvWrJHT6ZQkLViwQG+88Ya2bNkip9Op+vp6/fjHP9b48eN13333SZJ8Pp9Gjhyp7Oxs5eXlSZJWrlypmTNnqqioSG63W5JUUlKi3NxcLV++XP369Tur74QRNAAA2pZ2N4LWHM5OpqKiQvv27dOoUaNCjufk5Ki0tFQ+n0+SVFxcrPj4eGVmZpo1brdb6enpKi4uNo8VFxdr2LBhZjhrbquqqkrbtm2T1PQItKamJuSeTqdTw4cPD2urd+/eZjiTpMzMTCUmJmrz5s1n8jUAAIAOzHIB7VTKy8slSampqSHH09LS5Pf7zUeO5eXlSk1NDZvE4Ha7zTaOHTumr7/+OiRQNdcYhmHWNf88sS4tLU0HDhxQXV2dWXdijWEYSk1NNdsAAAA4lTYX0CorKyVJ8fHxIcebPzefr6qqUufOncOuT0hIMGuqq6tbbMvpdMrlcoW05XQ6w9Z4i4+PVzAYPKN7AgAAnEqbC2gAAADtXZsLaAkJCZL+OfrVrKqqKuR8fHy8ampqwq6vrKw0a5pHu05sy+fzyev1hrTl8/lUX18fdk/DMM7ongAAAKfS5gJa8zteJ77TVV5erqioKPXs2dOs83g8OnGSqsfjMdvo1KmTUlJSwtpqvq65rvmnx+MJu2f37t0VExNj1p3YVjAYDLknAADAqbS5gNazZ0/16tVLa9asCTleVFSkQYMGmbMxs7OzVVlZqdLSUrPG4/Fo+/btys7ONo9lZ2drw4YN8vv9IW3Fx8crIyNDkjRgwADFxcVp9erVZo3f79fatWvD2tq5c6f27dtnHistLdXRo0c1ZMiQ1vkCAABAu2fPa17EyyK8Xq82bNigPXv2aMuWLfr73/+uCy+8UHv27FFSUpJcLpe6dOmixYsXq7GxUVLTIrKbNm3S3LlzlZKSIklKSUlRWVmZVqxYoW7duqmiokKPPfaYkpOTNWvWLHM5D7fbrWXLlmnnzp1KTEzUxo0btXjxYk2dOlUDBw6UJDkcDhmGofz8fMXGxsrr9Wr+/PnavXu3nn76afPxZWpqqtavX6/Vq1crJSVFO3bs0BNPPKErr7xSd95551l/J8FgUF6v/9SFAADAElwup2y2s98O03IL1X755ZcaNmxYi+deeeUVXX311ZKatnoqKCgwt3q67777TrrV07p16xQIBJSVlaXZs2erW7duIXVbt27Vk08+qR07digpKUnjx49vcaunJUuWhG311DzK1uz4rZ4cDoeGDx+uWbNmsdUTAAAdSKQL1VouoCEcAQ0AgLal3e0kAAAA0NER0AAAACyGgAYAAGAxBDQAAACLIaABAABYDAENAADAYghoAAAAFkNAAwAAsBgCGgAAgMUQ0AAAACyGgAYAAGAxBDQAAACLIaABAABYDAENAADAYghoAAAAFkNAAzoQwzBkt9tkGMb57goA4Ds4zncHAJx7drtNUU6HYmIcqvH6leCKkrcuoIAvoIaGxvPdPQDACQhoQDtnt9sUGxetFRv36L2SctV6/Yp1RWn0YLduGXqpamvqCWkAYDEENKCdi3I6tGLjHr25bpd5rNbr1xtrmz7flJmqBq/vfHUPANAC3kED2jHDMBQT49B7JeUtnn/3w3K5Yhy8kwYAFkNAA9oxm81QjdevWq+/xfO1Xr9qvQHZbAQ0ALASAhrQjjU2BhXnilKsK6rF87GuKMW6HGpsDH7PPQPOHWYroz0goAHtWDAYVF1dQKMHu1s8P3qwW966gIJBAhraPrvdphiXUwmJLhlRdiUkuhTtcspu5686tD1MEgDaOb8voFuGXiqp6Z2zlmZxAm0ds5XR3hhB/ulseQ0NjTpypPZ8dwNtmN1uk8PpkCvGoVpvQLEuB+ugoV2JcTn1boknZLZys3E39NZNmamqZ7YyvkdJSbERjd4y7gt0AA0Njar3+lR51KtGf0CVR72q9/oIZ2gXmK2M9oiABnQgwWBQDQ2NvHOGdoXZymiPCGgAgDaN2cpojwhoAIA2jdnKaI+YxQkAaPOYrYz2hlmcbQCzOAHg1JitDCuJdBYnI2gAgHahoaFRDV6ffHV+2WyGKuv9PNZEm0VAAwC0K02zlQlmaNuYJAAAAGAxBDQAAACLIaABAABYDAENAADAYghoAAAAFkNAAwAAsBgCGgAAgMUQ0AAAACyGgAYAAGAxBDQAAACLIaABAABYDAENAADAYghoAAAAFkNAAwAAsJg2GdB+//vfq3fv3mF/5s2bF1K3fPlyjRgxQn379tXo0aO1adOmsLaqq6s1a9YsXXXVVcrIyNC0adN0+PDhsLqtW7dqzJgx6tevn4YOHaolS5YoGAyG1ASDQS1ZskTXXnut+vXrpzFjxqisrKx1f3kAANDuOc53ByKxdOlSde7c2fzcrVs3879XrVqlRx55RHfffbeuueYaFRUVacqUKXrttdfUv39/s2769Onas2eP8vLyFB0drWeffVaTJ0/WO++8I4ej6evZv3+/cnNzlZmZqenTp2vXrl2aN2+e7Ha7cnNzzbYKCgq0cOFCzZw5U71799Zrr72mSZMm6U9/+pN69uz5PXwjAACgPWjTAe1f//VflZSU1OK5hQsX6sYbb9T06dMlSddcc412796t5557TgUFBZKkbdu2qaSkRIWFhcrKypIkpaamKicnR2vXrlVOTo4kqbCwUF26dNGCBQvkdDo1aNAgHTlyRL/73e80YcIEOZ1O1dfXKz8/X5MmTdLEiRMlSVdccYVGjhypwsJC5eXlndsvAwAAtBtt8hHnqVRUVGjfvn0aNWpUyPGcnByVlpbK5/NJkoqLixUfH6/MzEyzxu12Kz09XcXFxeax4uJiDRs2TE6nM6Stqqoqbdu2TVLTI9CampqQezqdTg0fPjykLQAAgFNp0wHtpptuUnp6uoYNG6b8/Hw1NDRIksrLyyU1jYYdLy0tTX6/XxUVFWZdamqqDMMIqXO73WYbx44d09dffy232x1WYxiGWdf888S6tLQ0HThwQHV1da3xKwMAgA6gTT7iTE5O1tSpU/WjH/1IhmFo48aNevbZZ3Xo0CE9+uijqqyslCTFx8eHXNf8ufl8VVVVyDtszRISEvTpp59KappE0FJbTqdTLpcrpC2n06no6OiwewaDQVVWViomJibSXx0AAHQAbTKgDR48WIMHDzY/Z2VlKTo6Wi+//LLuvvvu89gzAACAyLXpR5zHGzVqlBoaGrRjxw4lJCRI+ufoV7OqqipJMs/Hx8erpqYmrK3KykqzpnmE7cS2fD6fvF5vSFs+n0/19fVh9zQMw6wDAAA4lXYT0I7X/B5Y83thzcrLyxUVFWUueeF2u+XxeMLWM/N4PGYbnTp1UkpKSlhbzdc11zX/9Hg8Yffs3r07jzcBAMBpazcBraioSHa7XT/84Q/Vs2dP9erVS2vWrAmrGTRokDkbMzs7W5WVlSotLTVrPB6Ptm/fruzsbPNYdna2NmzYIL/fH9JWfHy8MjIyJEkDBgxQXFycVq9ebdb4/X6tXbs2pC0AAIBTsee1wQW6cnNzdejQIdXU1Gj//v168cUX9dprr2nChAkaOXKkJKlLly5avHixGhsbJTUtIrtp0ybNnTtXKSkpkqSUlBSVlZVpxYoV6tatmyoqKvTYY48pOTlZs2bNks3WlF/dbreWLVumnTt3KjExURs3btTixYs1depUDRw4UJLkcDhkGIby8/MVGxsrr9er+fPna/fu3Xr66acjesQZDAbl9fpPXQgAACzB5XLKZjNOXXgSRvDE53ttwJw5c/Thhx/q4MGDamxsVK9evfSLX/xCEyZMCFkyY/ny5SooKNCBAweUmpqq++67T0OHDg1pq7q6WnPnztW6desUCASUlZWl2bNnh+xKIDWtc/bkk09qx44dSkpK0vjx4zV58uSQ+zVv9fT666/ryJEjSk9P10MPPWSOsp2thoZGHTlSG1EbAADg+5OUFCu7/ewfVLbJgNbRENDODcMwZLMZamwMhr2HCABAJCINaG1ymQ0gEna7TU6nQ9ExDtXW+dU5JkreuoACvoAaGhrPd/cAAGg/kwSA0xEVZVdMJ6ec0Q5V1dYrJsqhst3fqLjsK8XGRUf0rx0AAFoLfxuhw7DbbeoUG63D3x5TYzCoQCAoGdK/JLo0JOMirfvkCzmcDCoDAM4//jZChxEdHSV/oFElZQe0cotHtV6/Yl1RuikzVT+79lJdcmFnuWIc8tX5eScNAHBeEdDQIRiGIZvD0Dsb9+it9bvN47Vev/n534ZeqmN1AdlshhoaCGgAgPOHR5zoEOx2Qw67XSu3eFo8v3KLR1EOuzrFONTYSDgDAJxfjKChgzBU6/Wr9iQL/tZ6/TpW55fDZvB4EwBw3jGChg6hoaFRsa4oxbqiWjwf64pSp5go+erZsQEAcP4R0HDWDMOQ3W4L2U3BqoLBoOrq/Ro92N3i+dGD3aqvDygQYB00AMD5xyNOnDG73aYop0MxMQ7VeP1KcLWNhV799QHdMvRSSdK7H5abszhHD3brlqGXqram/jz3EACAJmz11AZYaasnu92m2Lhordi4R++VtBxyrBzS7HabHE6HXDEO1XoDinU52kS4BAC0LWz1hO9VlNOhFRv36M11u8xjtV6/3ljb9PmmzFQ1eH3nq3un1NDQqAavT746v2w2Q5X1rHkGALAe3kHDaTMMQzExDr1XUt7i+Xc/LJcrxtFm3klraGgknAEALImAhtNmsxmqOcVSFbXepoVeAQDA2SOg4bQ1NgYVd4qlKmJdLPQKAECkCGg4bcFgUHV1ge9cqsJbF+CxIQAAEWKSAM6I38dSFQAAnGsss9EGWGmZDYmlKgAAOBWW2cD3jqUqAAA4twhoOC2GYchmM9TYGDTDWNNSFQQzAABaGwEN3+l8buvUUigEAKAjIKAhxPGhyGYzzsu2Tm11r08AAFoLAQ2SWg5FPl+D1v7PF9/rtk5tfa9PAABaAwEN3xmKbsxMVdFHHn15uCbkmnc/LNcvhl0mX13rThBo63t9AgDQGlioFiGhqHkbp+ZQ9N6H5br9xh+GXXMutnVqT3t9AgAQCQJaB3eqULRyi0f9L0tWfKwz5Pi52NaJvT4BAGhCQOvgTicUVdb61KVzdMjxc7GtE3t9AgDQhIDWwQWDTaHowq6xLZ6PdUWpS+doRUXZdcmFnXVh11iNu6G3bhl6qQK+gAzDkN1ua5XHjuz1CQBAE7Z6agPOxVZPDodNzugoOZ121Xr96hQTpa27DuvlVdtDJgTc9bO+GnpFTzmj7Kr1+hTrcqreF1BjoEGGzaaYGIeO1QfUKdqh+rqAgsFG+XwNLY5ynWpdM8MwFBVlU4zLqXc27TnpXp/M4gQAWF2kWz0R0NqA1gxodrtNUdEOxURH6VidX9FOu8p2f6O3N+zWFb0v0E1Zbj34XIm+ra7XrSP76IarL9HyDZ+Hze78+XWX6dCRY0ru4pK3zq/oKIeiTghxAV9Afn9D2BIecSesa9bS+Xpfg6Kddvb6BAC0SQS0DqC1AprdblNcXLRq6wOKczlV4/WZP512m2Yu+lCD+/fQ6MFuRTvtqvc3aPNfv9Lra3eqqvafS1tcdEGc5k3L1h8371HF4RrNGDdAKzbs1nslHjPE/SQrVb8Y9gP56v3mLNGW1jXzHvPJ1cn5necDgcawETd2GQAAWBmbpeO0xcREKWgYKtriCQtTPx/2A00bk6HHl36sXwy7THX1AcVER+nKH16gYQN7quzzb8zHn7ff+EP94YM9emv9bi19eLhWbNitN9ftNu/TpXO00i5KlCQFgoachqG0ixLUpXP0/83E/Oe6ZjcPdp9y3bOgv8E8xy4DAICOgIDWQRiGIdmMsDBV6/Wbn3825FL1vCBOjUHp3Q89ISNaN2Wm6sl7sjTnxf9R/8uS9eyb29QjOU5J8TF6r8RjtnfRBXF68p4svfdhuZ59c1vY9Q8+V2K+49a02O0P9MHWL1vs84mL4bLLAACgo2AWZwfhcBiKcthDwtTx3ivxKCrKrjtvvlwrNn4etmjtW+t3670PyzV+ZB9V1tSr1uvXxd3iVOP1hSzRcfuNP9R7H5brrfW7W7z++EVvm0fToqNa/t/wxHXPvmtB3Xc27ZHDyb83AADtAwGtgzAMm2pPCFPHq/X6dazOr9TuCXrvw5MvWtunV5IS4qIV64rSF4dqFOdymuuWxcc61f+yZK3c0nIIPHHR29j/W/Os3t/yqNfx656xywAAoCMhoHUQgUCDYo8LUyeKdUWpU0yUjtUFvjPEVdX49I8qr0YPduurb2p0pKpOP8lKldT07lnz6NrJrj9+0dvRg93y+QIaesVFLdYfv+4ZuwwAADoSAloH0dgYlM8fMMPUiX6SlSqfv0GxLsd3hrgu8TFK6BStW4ZepnE39NaylZ/p58N+oLHDf6B6f6M5unay6xNinar3N5qL3fp9Ad0y9FKNu6G3eV2sKypkMdzm/rPLAACgo2CZjTagtZbZiIqyq1NstJafZEmMY7X1sjvsem+Lx5xFebxxN/TWTzJTVef1yW63yeF0yBXjUL2vQTZb0ztu9b6A3v2w/KTXNy/hceI6aM1tfde6ZzEu53f27abMVNV7fWHnAAD4vrEOWgfQmgvVRkXZ5XA6FO10mAHtxEVlY+OiT3sl/+PXIzMMyem0yxkdddLrT7au2YlttXT+TPsGAMD5QkDrAM7FVk82myGHw6ZAoDHsseDpjmidTKTXn6+2AQBoLQS0DuBcBLTTEelq/edytX92EgAAWBk7CeCcCQaDamg4+/AT6fXnq20AAM43ZnECAABYDAENAADAYghoAAAAFkNAAwAAsBgCWivbu3ev7rjjDvXv31+ZmZl6+umn5fOxeCoAADh9zOJsRZWVlbr99tvVq1cvLVq0SIcOHdKTTz6puro6Pfroo+e7ewAAoI0goLWiN998U7W1tVq8eLESExMlSQ0NDXr8/2/v3mOauts4gH+BFx0DC4MwVBAVFURFKxHRcImXOak4MVPCoogyvG1DB8SpU0QcGsS4zQWVAeqm03hHXQJe0YAUgnOK8xYnN1EEBGFtQYQKff8wnHe13atOsAf9fpIm7e88PX36cCAP5/fr6Zo1WLBgAezs7AycIREREXUGnOJsR9nZ2Rg9ep5XDJgAABBQSURBVLTQnAGATCZDa2sr5HK5ATMjIiKizoQNWjsqLi6Gk5OT1phEIoGtrS2Ki4sNlBURERF1NpzibEdKpRISiURn3NLSEgqF4l/v19jYCNbW5q+SGhEREb1GxsZGr/R8NmidgJGREUxMXu0HTURERJ0HpzjbkUQigUql0hlXKBSwtLQ0QEZERETUGbFBa0dOTk46a81UKhWqq6t11qYRERER/RM2aO3I19cXubm5UCqVwtiJEydgbGwMLy8vA2ZGREREnYmRRqPRGDqJN4VCoYC/vz/69u2LBQsWCBeq/eijj3ihWiIiInphbNDaWVFREeLi4nD58mWYm5sjICAAkZGR6NKli6FTIyIiok6CDRoRERGRyHANGhEREZHIsEEjIiIiEhk2aEREREQiwwaNiIiISGTYoBERERGJDBs0IiIiIpFhg0ZEREQkMmzQOpGioiKEhoZCKpXCy8sLGzZsQHNzs6HTEqU7d+4gJiYGAQEBGDRoECZPnqw37uDBg5g4cSLc3NwwZcoUnDt3TidGpVJhxYoVGDlyJIYPH47FixfjwYMHHf0WROf48eP47LPP4OvrC6lUioCAABw6dAjPXkqRNX1xWVlZCA4OxqhRozBkyBCMHz8e8fHxUKlUWnFnz57FlClT4ObmhokTJ+Lw4cM6+2pubkZCQgK8vLwglUoRGhqq893Ab6OGhgb4+vrCxcUFV69e1drGY/XFpKWlwcXFRee2ceNGrTjWs32xQeskFAoFZs+eDbVajcTERERGRuLAgQNYv369oVMTpdu3byMrKwu9e/dGv3799Makp6dj1apVkMlkSE1NhVQqRXh4OAoKCrTiIiIiIJfLERsbi40bN6KkpATz5s3DkydPXsdbEY2ff/4ZZmZmWL58OZKSkuDr64tVq1Zhy5YtQgxr+nL++usvDB06FGvWrMH27dsRGhqKo0eP4ssvvxRiLl68iPDwcEilUqSmpkImk2HlypU4ceKE1r7Wrl2LgwcPIjIyEomJiWhubsacOXN0mr23zdatW9HS0qIzzmP15W3btg379+8XbjNnzhS2sZ4dQEOdwo8//qiRSqWauro6YWzfvn0aV1dXTWVlpQEzE6eWlhbh/rJlyzT+/v46MR9++KEmKipKaywoKEgzd+5c4fGlS5c0zs7OmvPnzwtjRUVFGhcXF016enoHZC5eDx8+1BmLjo7WuLu7C/VmTV/d/v37Nc7OzsLv9aeffqoJCgrSiomKitLIZDLhcUVFhcbV1VWzb98+Yayurk4jlUo1KSkprydxESosLNRIpVLN3r17Nc7Ozpo//vhD2MZj9cUdPnxY4+zsrPdvQBvWs/3xDFonkZ2djdGjR8PKykoYk8lkaG1thVwuN2Bm4mRs/P8P7bt376K0tBQymUxrfNKkScjLyxOmjrOzsyGRSODl5SXEODk5wdXVFdnZ2e2fuIhZW1vrjLm6uqK+vh6PHj1iTdtJ2++4Wq1Gc3Mz8vPz4efnpxUzadIkFBUV4d69ewCAnJwctLa2asVZWVnBy8vrra7p2rVr8cknn6Bv375a4zxW2xfr2THYoHUSxcXFcHJy0hqTSCSwtbXlOpN/oa1mz/7h7tevH9RqNe7evSvE9e3bF0ZGRlpxTk5OrDuA33//HXZ2drCwsGBNX0FLSwuamppw/fp1bNmyBePGjYODgwPKysqgVqt1fvfbpu3b6lVcXAwbGxtYWlrqxL2tNT1x4gT+/PNPfPHFFzrbeKz+O5MnT4arqyvGjx+P5ORkYeqY9ewY/zF0AvRilEolJBKJzrilpSUUCoUBMurc2mr2bE3bHrdtVyqV6Natm87zLS0tce3atQ7OUtwuXryIjIwMLFu2DABr+irGjh2LqqoqAICPjw++/fZbAK9eU4lE8lb+fWhsbMT69esRGRkJCwsLne08Vl+Ora0tFi1ahGHDhsHIyAhnz57Fpk2bUFVVhZiYGNazg7BBI6KXVllZicjISHh6eiIkJMTQ6XR6KSkpaGxsRGFhIZKSkrBw4UL89NNPhk6r00pKSoKNjQ2mTZtm6FTeCD4+PvDx8REee3t7o2vXrti5cycWLlxowMzebJzi7CQkEoneT2MpFAqdaQ16vraaPVtTpVKptV0ikaC+vl7n+W9z3ZVKJebNmwcrKyskJiYK6/1Y039v4MCBGD58OAIDA7F161bk5+fj9OnTr1xTpVL51tW0vLwcO3bswOLFi6FSqaBUKvHo0SMAwKNHj9DQ0MBjtR3IZDK0tLTg5s2brGcHYYPWSeibo1epVKiurtZZn0LP11azZ2taXFwMU1NT9OrVS4grKSnRudZXSUnJW1n3x48fY8GCBVCpVNi2bZvWdAVr2j5cXFxgamqKsrIyODo6wtTUVG9Ngf/V3MnJCTU1NTrTmfrWrr7p7t27B7Vajfnz58PDwwMeHh7CWZ6QkBCEhobyWG1nrGfHYIPWSfj6+iI3N1f4jwR4ugjW2NhY6xMx9GJ69eqFPn366FxLKiMjA6NHj0aXLl0APK27QqFAXl6eEFNSUoIbN27A19f3teZsaE+ePEFERASKi4uxbds22NnZaW1nTdvHlStXoFar4eDggC5dusDT0xMnT57UisnIyEC/fv3g4OAA4OmUk7GxMU6dOiXEKBQK5OTkvHU1dXV1xa5du7RuX3/9NQBgzZo1WL16NY/VdpCRkQETExMMGjSI9ewgJrGxsbGGToKeb8CAATh48CByc3Px/vvv47fffkNCQgKmTZsGf39/Q6cnOo2NjcjMzERhYSHkcjlqamrQvXt3FBYWwtraGmZmZnjvvfewefNmtLa2AgBSU1Nx7tw5xMfHo0ePHgCAHj16oKCgAIcOHYKdnR3u3r2L1atXw9bWFitWrHju5TzeJKtXr0Z6ejoiIiJgY2ODyspK4WZtbQ0TExPW9CWFh4ejrKwMKpUKlZWVOHPmDNatW4devXph+fLlMDExgb29PZKSklBdXQ0zMzOkpaVhz549iImJwYABAwAAFhYWqKqqws6dO2FjY4Pa2lrExcWhsbER8fHx6Nq1q4Hf6evTtWtXODg4aN2amppw5MgRhIeHY8iQIQDAY/UlhIWFoaqqCvX19bhz5w527NiBPXv2YNasWcKlXVjP9mekefZcI4lWUVER4uLicPnyZZibmyMgIACRkZHCfyf0P/fu3cP48eP1btu1axc8PT0BPP1qktTUVNy/fx99+/ZFVFQUxo4dqxWvUqkQHx+P06dP48mTJ/D29kZ0dLTOGaQ33bhx41BeXq53W2ZmpnA2hzV9cSkpKcjIyEBZWRk0Gg3s7e0xYcIEhIWFaX36MDMzE5s2bUJJSQl69uyJ+fPnY/r06Vr7am5uxvfff49jx46hoaEB7u7uiI6O/sdv0nib5OfnIyQkBIcOHYKbm5swzmP1xaxduxbnz59HZWUlWltb0adPHwQGBmLWrFlal8xgPdsXGzQiIiIikeH5RCIiIiKRYYNGREREJDJs0IiIiIhEhg0aERERkciwQSMiIiISGTZoRERERCLDBo2IiIhIZNigEREREYkMGzQiok4kKysLiYmJhk6DiDoYGzQiok4kKysLmzdvNnQaRNTB2KARERERiQy/i5OISI/y8nKkpqYiLy8PFRUVMDMzg6enJ5YuXSp8MTwAqNVqJCcn49dff0VFRQXeffddODk5ITw8HF5eXgCA6upqfPfdd5DL5aitrYWVlRXc3NywcuVKrX1lZWUhOTkZN27cgJGRETw8PPDVV19hwIABAIDly5fjyJEjOrneunULAJCeno7t27ejpKQERkZGsLe3x/Tp0zF79uyOLBURdYD/GDoBIiIxunr1Ki5fvgx/f390794d5eXl2Lt3L0JCQpCeng4zMzMAwObNm5GcnIzAwEAMHToU9fX1uHbtGq5fvy40aIsWLUJhYSGCg4Nhb2+P2tpayOVyVFRUCA3a0aNHsXz5cnh7e2PJkiVobGzE3r17MWPGDBw5cgQODg4ICgrCgwcPIJfLsWHDBq185XI5oqKiMHr0aCxZsgQAUFxcjEuXLrFBI+qEeAaNiEiPx48f45133tEaKygoQFBQEBISEjB16lQAQEBAALp3747k5GS9+1EqlfDw8MDSpUsRFhamN6ahoQFjxoyBn58f4uLihPGamhr4+flBJpMJ49988w327NkjnDVrs27dOqSlpeHChQswMTH51++biMSBa9CIiPT4e3OmVqtRV1cHR0dHSCQS3LhxQ9gmkUhw+/ZtlJaW/uN+TE1NceHCBSgUCr0xubm5UCqV8Pf3R21trXAzNjbGsGHDkJ+f/9x8JRIJGhsbIZfLX+6NEpEocYqTiEiPx48fIzk5GWlpaaiqqsLfJxtUKpVwf/Hixfj8888xceJEODs7w9vbGwEBARg4cCAAoEuXLliyZAkSEhLg5eWFYcOGYcyYMZg6dSpsbW0BQGju/mkq0sLC4rn5zpgxA8ePH8e8efNgZ2cHLy8vyGQy+Pr6/tsSEJEBsUEjItIjLi4OaWlpmD17NqRSKbp16wYjIyNERkZqNWseHh44ffo0MjMzIZfLcejQIezcuRNr1qxBYGAgAGDOnDkYN24czpw5g5ycHPzwww9ISUnBzp07MWjQIGF/GzZsEJq2v3uRKUsbGxscPXoUOTk5yM7ORnZ2NtLS0jB16lQkJCS0U1WI6HXhGjQiIj1GjBiBCRMmID4+XhhramrC8OHDMWXKFKxfv17v8xoaGhAcHIyHDx8iOztbb0xpaSmmTp2KDz74ABs3bsTx48cRERGB7du3w9vb+//mFRcXh927d+usQXtWa2srYmNjsX//fpw6dQq9e/d+zjsmIjHhGjQiIj30nbX65Zdf0NLSojVWV1en9djc3ByOjo5obm4GADQ2NqKpqUkrxtHREebm5kKMj48PLCwskJycDLVarfO6tbW1wv22T48qlcr/m4exsTFcXFwAQHgdIuo8OMVJRKTHmDFjcOzYMVhYWKB///4oKChAbm4urKystOL8/f0xcuRIDB48GFZWVrh69SpOnjyJ4OBgAE/Pls2ZMwd+fn7o378/TExMcObMGdTU1MDf3x/A0zVmsbGxWLp0KT7++GNMmjQJ1tbWuH//PrKysuDu7o6YmBgAwODBgwEAa9euhbe3N0xMTODv74/o6GgoFAqMGjUKdnZ2uH//Pnbv3g1XV1f069fvNVaOiNoDpziJiPRQKpWIj4/HuXPn0NTUBHd3d6xcuRJz587FyJEjhSnOpKQknD17FqWlpWhubkbPnj0REBCAsLAwmJqaoq6uDomJicjLy0NlZSVMTEzg5OSE0NBQyGQyrdfMz89HSkoKrly5gubmZtjZ2WHEiBGYOXMmhgwZAgBoaWlBfHw80tPTUVdXB41Gg1u3buHkyZM4cOAAbt68CaVSCVtbW/j4+GDRokV617URkbixQSMiIiISGa5BIyIiIhIZNmhEREREIsMGjYiIiEhk2KARERERiQwbNCIiIiKRYYNGREREJDJs0IiIiIhEhg0aERERkciwQSMiIiISGTZoRERERCLDBo2IiIhIZNigEREREYkMGzQiIiIikfkvBNhv0/9ijR8AAAAASUVORK5CYII=" -} -``` - -#### Create Distribution Plot - -This action is used to create a distribution plot that illustrates the distribution between two data series: [https://seaborn.pydata.org/generated/seaborn.distplot.html#seaborn.distplot](https://seaborn.pydata.org/generated/seaborn.distplot.html#seaborn.distplot). - -##### Input - -|Name|Type|Default|Required|Description|Enum|Example| -|----|----|-------|--------|-----------|----|-------| -|color_palette|string|dark|True|Color palette of the plot|['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']|dark| -|column|string|None|True|Column containing values for distribution plotting|None|ExampleColumnName| -|csv_data|bytes|None|True|Base64 encoded CSV data from which to create the plot|None|UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==| -|kde|boolean|False|True|Display a kernel density estimation line on the plot|None|False| -|margin_style|string|dark|True|Style of the margin of the plot|['darkgrid', 'whitegrid', 'dark', 'white', 'ticks']|dark| - -Example input: - -``` -{ - "color_palette": "dark", - "column": "ExampleColumnName", - "csv_data": "UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==", - "kde": false, - "margin_style": "dark" -} -``` - -##### Output - -|Name|Type|Required|Description|Example| -|----|----|--------|-----------|-------| -|csv|bytes|True|Base64 encoded CSV data used to generate the plot|c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK| -|plot|bytes|True|Base64 encoded PNG plot data (can be attached to an email)|iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==| - -Example output: - -``` -{ - "csv": "c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK", - "plot": "iVBORw0KGgoAAAANSUhEUgAAAloAAAG/CAYAAACAOnlGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xl0VGW+7vFn15SEhEpMmEE0QYyAiQlwBE4kisqBqAe6G7q1B2VU2lb7mLbvPSoqU/oqrMvVBbZ0QNq2e+nhANoHByaFbugA2qIIDiCQgVECGFOVhCRVqdr3jyQlRcJQyKYYvp+1sorset+3frUTkifv3vvdhmmapgAAAHDO2aJdAAAAwKWKoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARR7QLuFSZpqlg0Ix2GQAA4AzZbIYMwzinYxK0LBIMmqqoqIl2GQAA4AwlJ8fLbj+3QYtDhwAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARR7QLAC4WhmFE3Mc0TQsqAQBcLAhawBkISKqr80fcLzbGIfu5LwcAcJEgaAGnYRiG6ur8+rKsQv6G4Bn3czps6n11shJincxsAcBliqAFnCF/Q1A+fyDaZQAALiKcDA8AAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGCRiINWcXGxxo0bp6ysLOXk5GjWrFny+Xyn7WeapubPn69bbrlFmZmZuvvuu/Xpp5+2aFdeXq5HHnlE2dnZuvHGGzV58mRVV1e3aLd27VqNGDFCGRkZGjZsmN54440WbXw+n2bOnKmcnBxlZWVp3LhxKikpOWmNNTU1ys3NVXp6uj777LPTvicAAIBTiShoeTwejRkzRn6/X3PnzlV+fr4WL16s55577rR9FyxYoDlz5mjs2LEqLCxU+/btNX78eO3bty/Uxu/3a+LEiSorK9Ps2bM1depUFRUV6bHHHgsba/PmzXr44YeVlZWlBQsWKC8vT5MnT9bKlSvD2hUUFGjJkiXKz8/X3Llz5fP5NHbsWFVVVbVa40svvaRAIBDJLgEAADgpRySNFy1apJqaGr344otKSkqSJAUCAU2bNk2TJk1Sx44dW+1XX1+vwsJCjR8/XmPHjpUk9evXT8OHD9fChQs1depUSdKqVau0a9cuLV++XGlpaZIkt9utCRMmaNu2bcrMzJQkzZs3T5mZmZo+fbokaeDAgdq3b5/mzJmj4cOHS5IOHTqkpUuXasqUKRo9erQkKSMjQ0OGDNGiRYt0//33h9VYXFys119/Xf/5n/+pKVOmRLJbAAAAWhXRjNb69es1aNCgUMiSpLy8PAWDQW3YsOGk/T755BNVV1crLy8vtM3lcmno0KFav3592Pjp6emhkCVJOTk5SkpK0rp16yQ1Hg788MMPQ4Gq2R133KHi4mLt379fklRUVKRgMBjWLikpSTk5OWGv2aygoED33HOPUlNTz3R3AAAAnFJEQaukpCQsBEmNM07t27c/5blPzc+d2LdHjx46ePCg6urqTjq+YRhKTU0NjbF37175/f5Wxzr+tUpKSpSSkqLExMQW7U6sdeXKldq5c6ceeuihk795AACACEUUtLxer9xud4vtiYmJ8ng8p+zncrkUExMTtt3tdss0zVBfr9ertm3bnnL85scT62j+/HRjud3usFpra2v13HPPKT8/XwkJCSd9DwAAAJG67Jd3mDdvnlJSUjRq1KholwIAAC4xEQUtt9vd6hV7Ho+nxSG6E/v5fD7V19eHbfd6vTIMI9TX7Xa3upTD8eM3P55Yh9frDXv+ZGN5vd5QmwMHDuiPf/yjfv3rX6uqqkper1fHjh2TJB07dkw1NTUnfU8AAACnE9FVh2lpaS3Ob6qqqtKRI0danDN1Yj9JKi0t1XXXXRfaXlJSoi5duig2NjbUbufOnWF9TdNUaWmpcnJyJEndu3eX0+lUSUmJBg8eHDbW8a+Vlpamo0ePtgiBx58Htn//fvn9fj3wwAMtar7vvvt0ww03aPHixafZKwAAAK2LaEYrNzdXGzduDM0eSY0nkttstlAQak3fvn2VkJCgFStWhLb5/X6tXr1aubm5YePv2LFDZWVloW2bNm1SZWWlbr75ZkmNVysOGDBAq1atCnuN5cuXq0ePHurWrZsk6aabbpLNZtPq1atDbTwej4qKikKv2atXL/35z38O+3jiiSckSdOmTWOZBwAA8L1ENKN1zz336C9/+YseeughTZo0SeXl5Zo1a5buueeesDW0xowZo4MHD+q9996TJMXExGjSpEmaO3eukpOTde211+q//uu/VFlZqQkTJoT6DRs2TIWFhXrkkUf0m9/8RrW1tZo1a1ZoNflmDz74oO677z5NnTpVeXl5+vDDD/XOO+/o+eefD7Xp1KmTRo8erVmzZslms6ljx44qLCxU27Ztdc8990hqPLw4YMCAVt9rnz591KdPn0h2DwAAQJiIglZiYqJeffVVzZgxQw899JDi4+M1evRo5efnh7ULBoMtVli///77ZZqm/vjHP6qiokK9evXSwoULdeWVV4baOJ1OvfzyyyooKNBvfvMbORwODR06VE8++WTYWP3799fcuXP1wgsvaOnSperSpYsKCgrC1umSpKeeekrx8fGaPXu2ampq1LdvX73yyiutXo0IAABwrhmmaZrRLuJSFAgEVVHByfSXAsMwVF3n19bdR+Xzn/ktmlxOu264pp0SYp3ivxkAXPiSk+Nlt5/bBRku++UdAAAArELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIRB63i4mKNGzdOWVlZysnJ0axZs+Tz+U7bzzRNzZ8/X7fccosyMzN1991369NPP23Rrry8XI888oiys7N14403avLkyaqurm7Rbu3atRoxYoQyMjI0bNgwvfHGGy3a+Hw+zZw5Uzk5OcrKytK4ceNUUlIS1mbdunX6xS9+oYEDB+r666/XbbfdpmeffVZVVVUR7BUAAICWIgpaHo9HY8aMkd/v19y5c5Wfn6/FixfrueeeO23fBQsWaM6cORo7dqwKCwvVvn17jR8/Xvv27Qu18fv9mjhxosrKyjR79mxNnTpVRUVFeuyxx8LG2rx5sx5++GFlZWVpwYIFysvL0+TJk7Vy5cqwdgUFBVqyZIny8/M1d+5c+Xw+jR07NixEVVZWKjMzU9OmTdPChQs1btw4/c///I/+4z/+I5JdAwAA0IIjksaLFi1STU2NXnzxRSUlJUmSAoGApk2bpkmTJqljx46t9quvr1dhYaHGjx+vsWPHSpL69eun4cOHa+HChZo6daokadWqVdq1a5eWL1+utLQ0SZLb7daECRO0bds2ZWZmSpLmzZunzMxMTZ8+XZI0cOBA7du3T3PmzNHw4cMlSYcOHdLSpUs1ZcoUjR49WpKUkZGhIUOGaNGiRbr//vslSSNHjgyrdcCAAXK5XHr66adVXl5+0vcEAABwOhHNaK1fv16DBg0KhSxJysvLUzAY1IYNG07a75NPPlF1dbXy8vJC21wul4YOHar169eHjZ+enh4KWZKUk5OjpKQkrVu3TlLj4cAPP/wwFKia3XHHHSouLtb+/fslSUVFRQoGg2HtkpKSlJOTE/aarWl+f36//5TtAAAATiWioFVSUhIWgqTGGaf27du3OPfpxH6SWvTt0aOHDh48qLq6upOObxiGUlNTQ2Ps3btXfr+/1bGOf62SkhKlpKQoMTGxRbvWag0EAqqvr9cXX3yh3//+97r11lvVrVu3k74nAACA04no0KHX65Xb7W6xPTExUR6P55T9XC6XYmJiwra73W6ZpimPx6PY2Fh5vV61bdv2lOM3P55YR/Pnzc+fbCy3291qrUOGDFF5ebkkafDgwZo9e/ZJ3w8AAMCZYHmHJvPnz9eiRYtUUFCgkpIS/fKXv1QgEIh2WQAA4CIW0YyW2+1uddkDj8fT4hDdif18Pp/q6+vDZrW8Xq8Mwwj1dbvdrS7l4PF41LlzZ0kKtT2xDq/XG/b8ycbyer2t1nrddddJkrKzs5WRkaGRI0fqvffea3EuGAAAwJmKaEYrLS2txflNVVVVOnLkSItzpk7sJ0mlpaVh20tKStSlSxfFxsaedHzTNFVaWhoao3v37nI6nS3anXgeWFpamo4ePdriMGFr54GdKD09XU6nU3v37j1lOwAAgFOJKGjl5uZq48aNodkjSVq5cqVsNptycnJO2q9v375KSEjQihUrQtv8fr9Wr16t3NzcsPF37NihsrKy0LZNmzapsrJSN998s6TGqxUHDBigVatWhb3G8uXL1aNHj9AJ7DfddJNsNptWr14dauPxeFRUVBT2mq3ZunWr/H4/J8MDAIDvxT61eRGrM9CzZ08tWbJEGzduVIcOHfTRRx9p5syZGjVqlO68885QuzFjxuill17SfffdJ0lyOBwyDEOFhYWKj49XbW2tZs+erZ07d2rWrFmhQ3mpqal6//33tWLFCnXu3Fnbt2/X9OnT1b9/f02cODE0fteuXTVv3jwdOXJEcXFxevPNN/Xaa6/pmWeeUc+ePSVJCQkJKi8v16uvvqqUlBRVVFRoxowZqq2t1bPPPhs6hPnwww9r7969qqqq0qFDh/T+++/rd7/7na688ko9/vjjstvtZ7VjTdNUbS3LQ1wKDMOQryGo8opjCgTNM+5nt9vUKbmNXI6z+x4CAJxfcXEu2WzGOR3TME3zzH9zqPEWPDNmzNCWLVsUHx+vkSNHKj8/Xy6XK9Tm3nvv1YEDB7R27drQtuZb8Lz++uuqqKhQr1699MQTTyg7Ozts/PLychUUFKioqEgOh0NDhw7Vk08+qYSEhLB2a9as0QsvvKDS0lJ16dJFDzzwQGhh0mY+n0/PP/+8li1bppqaGvXt21dPPfVUaCkIqfEk+OXLl2vv3r0yTVNdu3bV0KFDNWHChBavGYlAIKiKipqz7o8Lh2EYqq7za+vuo/L5z/wCCZfTrhuuaaeEWKci/G8GAIiC5OR42e3n9jrBiIMWzgxB69JB0AKAy4MVQYvlHQAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLRBy0iouLNW7cOGVlZSknJ0ezZs2Sz+c7bT/TNDV//nzdcsstyszM1N13361PP/20Rbvy8nI98sgjys7O1o033qjJkyerurq6Rbu1a9dqxIgRysjI0LBhw/TGG2+0aOPz+TRz5kzl5OQoKytL48aNU0lJSVibFStW6MEHH1Rubq6ysrI0cuRILV26VKZpRrBXAAAAWoooaHk8Ho0ZM0Z+v19z585Vfn6+Fi9erOeee+60fRcsWKA5c+Zo7NixKiwsVPv27TV+/Hjt27cv1Mbv92vixIkqKyvT7NmzNXXqVBUVFemxxx4LG2vz5s16+OGHlZWVpQULFigvL0+TJ0/WypUrw9oVFBRoyZIlys/P19y5c+Xz+TR27FhVVVWF2vzpT39SXFycHn/8cc2bN0+5ubl6+umn9fvf/z6SXQMAANCCI5LGixYtUk1NjV588UUlJSVJkgKBgKZNm6ZJkyapY8eOrfarr69XYWGhxo8fr7Fjx0qS+vXrp+HDh2vhwoWaOnWqJGnVqlXatWuXli9frrS0NEmS2+3WhAkTtG3bNmVmZkqS5s2bp8zMTE2fPl2SNHDgQO3bt09z5szR8OHDJUmHDh3S0qVLNWXKFI0ePVqSlJGRoSFDhmjRokW6//77Q2MlJyeHah00aJAqKyv1yiuv6Fe/+pVsNo6uAgCAsxNRili/fr0GDRoUClmSlJeXp2AwqA0bNpy03yeffKLq6mrl5eWFtrlcLg0dOlTr168PGz89PT0UsiQpJydHSUlJWrdunaTGw4EffvhhKFA1u+OOO1RcXKz9+/dLkoqKihQMBsPaJSUlKScnJ+w1jw9ZzXr16qXq6modO3bstPsEAADgZCIKWiUlJWEhSGqccWrfvn2Lc59O7CepRd8ePXro4MGDqqurO+n4hmEoNTU1NMbevXvl9/tbHev41yopKVFKSooSExNbtDtVrZL08ccfq2PHjkpISDhlOwAAgFOJKGh5vV653e4W2xMTE+XxeE7Zz+VyKSYmJmy72+2WaZqhvl6vV23btj3l+M2PJ9bR/PnpxnK73aesdfPmzVq+fLnGjx9/0jYAAABnghOQjnPo0CHl5+drwIABuu+++6JdDgAAuMhFFLTcbnfYFXvNPB5Pi0N0J/bz+Xyqr68P2+71emUYRqiv2+1udSmH48dvfjyxDq/XG/b8ycbyer2t1ur1enX//fcrKSlJc+fO5SR4AADwvUWUJtLS0lqc31RVVaUjR460OGfqxH6SVFpaGra9pKREXbp0UWxs7EnHN01TpaWloTG6d+8up9PZot2J54GlpaXp6NGjLQ4TtnYeWF1dnSZNmqSqqiq9/PLLrR5yBAAAiFREQSs3N1cbN24MzR5J0sqVK2Wz2ZSTk3PSfn379lVCQoJWrFgR2ub3+7V69Wrl5uaGjb9jxw6VlZWFtm3atEmVlZW6+eabJTVerThgwACtWrUq7DWWL1+uHj16qFu3bpKkm266STabTatXrw618Xg8KioqCnvNhoYGPfrooyopKdHLL7980iUqAAAAImWf2ryI1Rno2bOnlixZoo0bN6pDhw766KOPNHPmTI0aNUp33nlnqN2YMWP00ksvhc5zcjgcMgxDhYWFio+PV21trWbPnq2dO3dq1qxZoUN5qampev/997VixQp17txZ27dv1/Tp09W/f39NnDgxNH7Xrl01b948HTlyRHFxcXrzzTf12muv6ZlnnlHPnj0lSQkJCSovL9err76qlJQUVVRUaMaMGaqtrdWzzz4bOjF/ypQpevfdd/Xoo48qJSVFhw4dCn0kJyfLbref1Y41TVO1tf6z6osLi2EY8jUEVV5xTIHgmd8xwG63qVNyG7kcZ/c9BAA4v+LiXLLZjHM6pmFGeK+Z4uJizZgxQ1u2bFF8fLxGjhyp/Px8uVyuUJt7771XBw4c0Nq1a0Pbmm/B8/rrr6uiokK9evXSE088oezs7LDxy8vLVVBQoKKiIjkcDg0dOlRPPvlki6UW1qxZoxdeeEGlpaXq0qWLHnjggdDCpM18Pp+ef/55LVu2TDU1Nerbt6+eeuqp0FIQknTrrbfqwIEDrb7XNWvWhGbIIhUIBFVRUXNWfXFhMQxD1XV+bd19VD5/4Iz7uZx23XBNOyXEOrmlEwBcBJKT42W3n9tztCMOWjgzBK1LB0ELAC4PVgQtLq0DAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIo5oFwBcygyj8UMyIupnmqYl9QAAzi+CFmARu92QzWZTVW2DpMiCU2yMQ3ZrygIAnEcRB63i4mIVFBRoy5Ytio+P18iRI/Xoo4/K5XKdsp9pmlqwYIFef/11VVRUqFevXnriiSeUlZUV1q68vFwFBQUqKiqS0+nU0KFD9cQTTyghISGs3dq1a/XCCy+otLRUXbp00QMPPKBRo0aFtfH5fHr++ef11ltvqaamRtnZ2Xr66aeVlpYWarNnzx4tXLhQW7du1a5du5SWlqZ33nkn0t0CtGC3Gar1Nah4n0e+hsAZ93M6bOp9dbISYp3MbAHARS6ic7Q8Ho/GjBkjv9+vuXPnKj8/X4sXL9Zzzz132r4LFizQnDlzNHbsWBUWFqp9+/YaP3689u3bF2rj9/s1ceJElZWVafbs2Zo6daqKior02GOPhY21efNmPfzww8rKytKCBQuUl5enyZMna+XKlWHtCgoKtGTJEuXn52vu3Lny+XwaO3asqqqqQm127dqldevW6aqrrlKPHj0i2R3AGfE3BOXzB874w98QjHbJAIBzJKIZrUWLFqmmpkYvvviikpKSJEmBQEDTpk3TpEmT1LFjx1b71dfXq7CwUOPHj9fYsWMlSf369dPw4cO1cOFCTZ06VZK0atUq7dq1S8uXLw/NOrndbk2YMEHbtm1TZmamJGnevHnKzMzU9OnTJUkDBw7Uvn37NGfOHA0fPlySdOjQIS1dulRTpkzR6NGjJUkZGRkaMmSIFi1apPvvv1+SdOutt+r222+XJD3++OP6/PPPI9klAAAAJxXRjNb69es1aNCgUMiSpLy8PAWDQW3YsOGk/T755BNVV1crLy8vtM3lcmno0KFav3592Pjp6elhh/ZycnKUlJSkdevWSWo8HPjhhx+GAlWzO+64Q8XFxdq/f78kqaioSMFgMKxdUlKScnJywl7TZuPCSwAAYI2IUkZJSUlYCJIaZ5zat2+vkpKSU/aT1KJvjx49dPDgQdXV1Z10fMMwlJqaGhpj79698vv9rY51/GuVlJQoJSVFiYmJLdqdqlYAAIBzJaJDh16vV263u8X2xMREeTyeU/ZzuVyKiYkJ2+52u2Wapjwej2JjY+X1etW2bdtTjt/8eGIdzZ83P3+ysdxu9ylrBU4naJryVPt01FOnb6vqZDMMxcU4FOuyK9blUEKcU4kJp744BABweWB5B+AM1PsC2rb7qPYcqtI33jo1BE59NeAVbWPU6+or1CG5zXmqEABwIYooaLnd7rAr9pp5PJ4Wh+hO7Ofz+VRfXx82q+X1emUYRqiv2+1WdXV1q+N37txZkkJtT6zD6/WGPX+ysbxe7ylrBY5XW9+gv205oBUf7FFNXUNou8NuKMUdq5TEWElSnS+g2voG1fkC8lT79G1VvTZ+dkgffH5IXdsn6LqrktQ5JT5abwMAECURBa20tLQW5zdVVVXpyJEjLc6ZOrGfJJWWluq6664LbS8pKVGXLl0UGxsbardz586wvqZpqrS0VDk5OZKk7t27y+l0qqSkRIMHDw4b6/jXSktL09GjR1uEwNbOAwNO5G8IaPVH+7Tqn/tUXeuXJLnjXep1VZI6JreRO94lm9H6au/1voDKDnlV9nWVyr+t1b7D1dp3uFppXdzqf117xbqYSAaAy0VEJ8Pn5uZq48aNodkjSVq5cqVsNlsoCLWmb9++SkhI0IoVK0Lb/H6/Vq9erdzc3LDxd+zYobKystC2TZs2qbKyUjfffLOkxqsVBwwYoFWrVoW9xvLly9WjRw9169ZNknTTTTfJZrNp9erVoTYej0dFRUVhrwmc6HBlrX73l4/1xroSVdf61fGKON07LF2jb+mh9O5XKCkh5qQhS5JiXHald79Co4b00P/+RV/1uuoKSVLJQa+W/aNMxQc8LEQKAJcJ+9TmRazOQM+ePbVkyRJt3LhRHTo8SVIIAAAgAElEQVR00EcffaSZM2dq1KhRuvPOO0PtxowZo5deekn33XefJMnhcMgwDBUWFio+Pl61tbWaPXu2du7cqVmzZoVmnFJTU/X+++9rxYoV6ty5s7Zv367p06erf//+mjhxYmj8rl27at68eTpy5Iji4uL05ptv6rXXXtMzzzyjnj17SpISEhJUXl6uV199VSkpKaqoqNCMGTNUW1urZ599NnQIs7a2VmvWrNHu3bu1YcMGHT16VJ06ddLu3buVnJysuLi4s9qxpmmqtmkmBBePLbuO6PnFW/WNp04JcU7dNzxdY/KuU8fkNjr8ba0CwTMPSC6nXVd2bKs2MU51So7TUU+dqmv92ne4Woe/rVXnlDZyOlreaMdut6lTchu5WnkOAGCduDiXbLbI7k17OoYZ4Z/WxcXFmjFjRtgtePLz88NuwXPvvffqwIEDWrt2bWibaZqaP39+i1vwZGdnh41//C14HA6Hhg4dqieffLLFLXjWrFnT4hY8zQuTNmu+Bc+yZctUU1Ojvn376qmnngpbAX7//v267bbbWn2vf/7znzVgwIBIdk9IIBBURUXNWfXF+RcIBvXmuhKt+HCvJKlHV7ceHHm9kt2xMgxD1XV+bd19VD7/md9KJ6GNUz26JWlH6beq9zcoGDT1ZVmFtu7+RoGgqbgYh27t11Up7tiwfi6nXTdc045b8ADAeZacHC+7/dyurxlx0MKZIWhdPGrrGzT3jW3asbdSkjS0/5X68ZAecjT9ZztXQatZ1TGf1n5yQJ5qnxx2Q4Nv6KIrO3z3hwRBCwCiw4qgxbLouKzV1jfo+SVbtWNvpWJddv3qB9frp7f3DIUsK7Rt41LegO7qnNJGDQFTf/vkgL4sqyBUAcAliKCFy1ZzyNq936M2MQ79r59mq/91Hc7La7ucdt3Wr5uuvbLx/MTNO47on9sPE7YA4BJD0MJlqba+Qc8v/i5k/fanWUrt3PKuB1ay2QwN6N1R/dPbS5K+2ltJ2AKASwxBC5ed2voG/b/Fn2r3AY/iYxtD1tWdzm/IamYYhnqnJisno5OkxrD14ZflhC0AuEQQtHBZaQgE9fu/fqbiA97GkHVPdtRC1vF6dE3UoOs7SpI+L6nQW0VlhC0AuAQQtHDZME1Tr723U1+WfasYp12P3ZOlqzq1vPF4tPTslqQBvRvPEXt/8z79zz9Ko1wRAOD7ImjhsrH6o31a9+lBGZImjehzQcxknSi9+xUa2KdxZuutDaVa2bSuFwDg4kTQwmVhy64jWrx2tyTp7luvUVbPdlGu6OSuT0vRyJtSJUmL/7ZbH+04HOWKAABni6CFS96eQ1UqfOsLmZJuye6qof9yZbRLOq3b+nfT7f0a79u54O0vtWt/ZZQrAgCcDYIWLmmeGp/mvLFNPn9Qfa6+Qj+7vaeMU9wQ+kJhGIZ+evu1yu7ZTg2BoOa+8ZnKK45FuywAQIQIWrhkBYOmCpd9rm+r6tU5pY0e/MH1lq74fq7ZbIYe+Pc+Su3cVtW1fj2/eKu8x3zRLgsAEIGL57cOEKG//qNEO/ZWKsZp10M/zFCbWGe0S4pYjMuuX4++Qe0SY3W4slZz39gmf8OZ328RABBdBC1ckrbuPqp3N+2RJI3Nu05d2sVHuaKzlxjv0qM/vkFtYhwqPuDVn1Z8xRpbAHCRIGjhknO0slYvv/OlJOm2vt00oHfHKFf0/XVpF68Hf3i9bIahTV8c0qp/7ot2SQCAM0DQwiXF3xDU7//nc9XUNSi1s1s/ufWaaJd0zvS5Oll339b4fpb8fbc+K/kmyhUBAE6HoIVLyn+v3aU9h6oUH+vQr35wvZyOS+tb/PZ+3TQ4s7NMU/rDsi/09Tc10S4JAHAKl9ZvIVzWPv7qiNZ+ckCSdP+/91FKYmyUKzr3DMPQL/4tXdd0S1RtfYPmvPGZjtX5o10WAOAkCFq4JHzjqdOfVmyXJA0f0F2ZPVKiXJF1nA6bHvphhpLdMSqvOKY/vPWFgkFOjgeACxFBCxe9QDCoBW9/0XReVlv9KDct2iVZLjHepUd+lCmXw6bPSyr05vqSaJcEAGgFQQsXvbc3lGnnfo9iXXZNGtHnolqU9Pu4qlNbjb3jOknS8g/26J/by6NcEQDgRJfHbyRcsr7a+63e3lgmSbpvWLo6XNEmugWdZwN7d9LwAd0lSX9cvl17y6uiXBEA4HgELVy0qmv9mv/2lzJNKef6ThrYp1O0S4qK0Tf3UJ/UZPn8Qb345meq4jY9AHDBIGjhomSapl5Zvl3fVtWrY3Ib/fzfro12SVFjsxmaNKKPOiTF6ainTn9Y9oUCwWC0ywIAiKCFi9TfPz2oLbuOym4z9MsRfRTrckS7pKhKiHPq4VEZinHatX3Pt/rvNbujXRIAQAQtXIQOHK3RojW7JEmjb+mhqzq1jXJFF4Zu7RM08a7ekqT3P96v9VsPRrkiAABBCxcVf0NAhcs+l78hqOtTkzX0X66MdkkXlH7p7fWDwamSpL+s+kq79ldGuSIAuLwRtHBRWfy3Yu0/UiN3G6cm3NVbNsOIdkkXnH//16vVP729AkFTv3/zM33jqYt2SQBw2SJo4aLx6e6jWvPxfknShLt6KzHeFeWKLkyGYWjCnb11ZYcEeY/5NffNbar3B6JdFgBclghauChUeOv0x3cbb7Hzb/9ypTLSLt1b7JwLMS67HhmVobZtnNpbXq2F73ypoMltegDgfCNo4YIXCAY1/60vVF3r11Ud22rUzT2iXdJFoV1inB76YYbsNkObvzqiv3KbHgA47whauOAtK/ruFju//EEfOR18256pa69M0ti8xtv0vLtpj/7BlYgAcF7xGwsXtC/KKvRu0y12xgy/Th0vs1vsnAs5GZ317/96tSTpz6u+0pdlFdEtCAAuIwQtXLA81fVa8PaXMiXdnNVFA3p3jHZJF60fDE7VgN4dG69E/OvnOni0JtolAcBlgaCFC1IwaGr+21/KW+NT1/bx+ultPaNd0kXNMAyNv+M6XdMtUbX1DXphyVZ5quujXRYAXPIIWrggLSsq1fY938rltOnBkdfL5bRHu6SLntNh18M/ygjdE/H/Ld6qY3UN0S4LAC5pBC1ccLbsOqK3m8/LGnadurSLj25BlxB3G5fy775B7jZO7TtcrTlvbJO/gTW2AMAqBC1cUA5VHNPL73wpSbqtXzcNur5TlCu69HS8oo3yf5KluBi7du6r1B+WfaFAMBjtsgDgkkTQwgWjtr5BL775mWrrA+rZLVF333pNtEu6ZF3Vqa1+PSpTDrtNW3Yd1asrv5LJgqYAcM4RtHBBME1TryzfroNHa5SY4NKvfnC9HHa+Pa2U3v0KPTiyjwxDKtr2tRb/bTdhCwDOMX6T4YKw8sO92vzVEdlthh76YYYSE2KiXdJlIfva9qEFTVf9c5+W/L2YsAUA5xBBC1H38VdHtPTvxZKkn93eU9d0TYxyRZeXwZlddO+/XSupMfD+91pmtgDgXCFoIapKDnq14O0vZEq6JburbsnuGu2SLktD+nbTvcPSJUmrP9qnRWsIWwBwLhC0EDVHKms1Z+lW+RqCykhL0c+H9pRhGNEu67I1JLur7hveGLbe27xP//X+LsIWAHxPBC1ERU2dXy8s2SrvMb+6d0jQL0f2kd3Gt2O03ZLVVWOawtb7H+/XK8t3qCHA0g8AcLb4zYbzriEQ1O/f/Exff3NMV7SN0X/8+AbFxTiiXRaa3JzVVePyrmu8GvGzrzX3jc9U52MFeQA4GwQtnFcNgaAKl32hHXsrFeuy69Ef36Ar2nKF4YVm8A1d9MiPMuVy2PRZyTea+foWeWp80S4LAC46BC2cN4FgUC+/86U+3nlEDnvjMg5XdkiIdlk4iaye7fS/fpathDin9hyq0v/5y2aVVxyLdlkAcFEhaOG8CAZN/fHd7frn9sOy2wz96ocZ6pOaHO2yLkmGYUT8cbJ+13RN0uT7+qt9UpyOVNap4M+b9XlJBRctXGDO9muOltiXONc4MQaWC5qm/rRihzZ9US67zdCDP7heWde0i3ZZl6SApLo6f0R9DENyuRyqP0m/hDZOPfqTG7TgrS9UdqhKzy/+VHcMukojctPk5JdM1J3N11ySYmMcsp/7ci5q7EtYgaAFSwWDpv686isVffa1bIahSSP6qO+17aNd1iXJMAzV1fn1ZVmF/A1nfqVgm1iHrursVvE+j3wNgZO2G9K3qzZ9Ua4de77Vu5v2aM+hKj34g+u5kCGKzvZr7nTY1PvqZCXEOlnCown7ElbhJyQsU+8PaP5bX2jLrqMyDGniXb3U/7oO0S7rkudvCMrnP3lgOpHLaTvjfjf26qDktjH68MtyfV5aoamvfKRfjuyj1M7u71Uzvp9Iv+Y4OfYlzjXO0YIlqo759H//a4u27Doqh92mX468XgP7dIp2WTgHrumWqH/PuVrJ7hgdqazV7/78sf66voT1tgCgFQQtnHOHvz2m//OXj1V80Kv4WId+e0+W/oWZrEtKu6Q4/e+f99WNvTooaJp6e2OZCl7drP2Hq6NdGgBcUAhaOKd27/fod3/5WOXf1irFHasnftFP116ZFO2yYIH4WKce/EGGfjmyjxLinNp7uFrT/vSR3t5QGtE5LgBwKeMcLZwTQdPUyg/36s11JQqaprp3TNCjP75BSQksRnqpu7FXR6VfmaRXV36lT3cf1V//UaoNnx3S3bddo6xr2nH5O4DLGkEL35u3xqeX3/lSn5dWSJIG9O6o+4alczXaZSQxIUaPjMrQB1+Wa/HfdutwZa3mvvGZ+lx9he65/Vp1bRcf7RIBICr4TYjvZceeb1X49hfyVPvkctj0s6HXanBmZ2YxLkOGYWhQn07Kuqadln+wR6v+uVdflH2rKQv/qZsyO+mOQVerQ1JctMsEgPOKoIWzUnXMp6V/L9Y/tn0tSerSLl6/HNlH3dpzS53LXVyMQ6Nu7qHBmZ3132t3a8uuo1q/9WsVbTukQX066s5/vVqdkttEu0wAOC8IWohI0DRVtO1rLfnbbtXUNUiScm/oop/e1lMxLtZGxnc6XNFGj4zK1K79lXp7Q5k+L63Qhs8PaeMXh/Qv13XQrX27qWe3RGY/AVzSCFo4Y7sPePTfa3ap+KBXktStfbzuHZaunt24qhAn17Nbkn5zd5ZKDnr19oZSbS3+Rv/cflj/3H5YXdvF65bsrhrUp5PaxPLjCMClh59sOCXTNPXV3kq9vbFM2/d8K0mKcdn1w5tSdVv/brLbWCEEZyati1v/8eMbtLe8Sms/2a8PvizXgaM1eu29nVry993q27O9+l/XQRlpyXI6mB0FcGkgaKFVwaCpz0u/0bub9mjXfo8kyW4zNOj6Tvrh4DRd0ZZlG3B2undsq7F5vfSTIddo0xfl+vuWAzpwtEYffFmuD74sV4zLruxr2qlfenv1uiqZmS4AFzV+giHM4W+PqeizQ9r4+deq8NZLkhx2mwbf0Fl5A7qrXSJXjeHcaBPr1G39uunWvl1VctCrj3Yc1uavDqvCWx8KXYYhpXV2q/fVyep99RVK65Iop4NZVAAXD4IWdLSyVttKGs+b2bmvMrS9TYxDN2V21rAbuzODBcsYhqEeXRPVo2uifnLrNSptCl1bi79RecUxFR/0qvigV29vLJPdZujKDglK7ezW1Z3bKrWTWx2T2xC+AFywIg5axcXFKigo0JYtWxQfH6+RI0fq0UcflcvlOmU/0zS1YMECvf7666qoqFCvXr30xBNPKCsrK6xdeXm5CgoKVFRUJKfTqaFDh+qJJ55QQkL4sgFr167VCy+8oNLSUnXp0kUPPPCARo0aFdbG5/Pp+eef11tvvaWamhplZ2fr6aefVlpa2jl5Txer2voGlXzt1ecl32hb8Tf6+ptjoecMSb1Tk3VTRmf1vbYd58rgvLIdF7ruua2nvvHU6cuyCn2551ttL6uQ95hfZYeqVHaoStryXZ/2SbHqnBKvTilt1CEpTle0jVGyO1bJ7hi1iXFE/crGhkBQdb6A6n0B1fkbH+uPf/QH5G8IytcQkN8fVH1DQA0NphoCweM+TAWDpoJm82PT2MGgqmp8oc9tRmN4DT3aGj/sNkM2o/HR5bLrSGWtEmKdcjpscjltinHY5XLZFeNs+nDZFdv0b5fTFvV9eLaa973PH2j8Gvgb/13vDzY9Nn7uD5iqrvNr/+Fq+fyB0L4OBL/b36ZpyjQlU43/liSbzdAHnx+Sw26TYTSeYmG32xr3td2Q024L7ePGfx+3b5v2d6zLrtgYh9rEOBTratxuu0j3N1qKKGh5PB6NGTNGV199tebOnavy8nI999xzqqur0zPPPHPKvgsWLNCcOXP029/+Vunp6Xrttdc0fvx4LVu2TFdeeaUkye/3a+LEiZKk2bNnq66uTjNnztRjjz2mwsLC0FibN2/Www8/rNGjR+vJJ5/UBx98oMmTJys+Pl7Dhw8PtSsoKNDy5cv1+OOPq2PHjvrDH/6gsWPH6t1331Xbtm2/93u6GNTWN+hQxTHtLa9S8UGvSg96dfBojczj2tgMQ9d0dSvzmnYa2Lujkt2xUasXOF5KYqwG39BFg2/oItM0ddRTp9KvvU0fVdpbXqU6X0Dl39aq/NtaaXfLMVxOm9rGORUf51R8rFMJcU7FxTgaw4XTLpfDJpfT3hhImgOKzZAhKWgqLNw0Bx5/Q2P48Tc0/bJuemz+xX3iL/aGgNmysCj75KsjZ9zWkOQKBQNbKIy5mh6bg4TL0fhvp8MmR1PAcDQHj6awZ7cZMppCoNE0uCEjFGKCTY+BYFCBoKlAwFRDMKhA034PfQQC8jUE5fMHQ2HJ5w+qrvnr0LTvA0Hr9/2+czyeocb16NrENn3EONQm1qn4WIfiY51qE+to+n5u+XlcjIOQdoGJKGgtWrRINTU1evHFF5WU1HhJfyAQ0LRp0zRp0iR17Nix1X719fUqLCzU+PHjNXbsWElSv379NHz4cC1cuFBTp06VJK1atUq7du3S8uXLQ7NObrdbEyZM0LZt25SZmSlJmjdvnjIzMzV9+nRJ0sCBA7Vv3z7NmTMnFLQOHTqkpUuXasqUKRo9erQkKSMjQ0OGDNGiRYt0//33f6/3dKGo9wfkqa7Xt1X1qvDWq6KqThXeeh2qOKavv6lRZbWv1X4p7hhd1/0KZfRIUZ/UZMXHOs9z5UBkDMNQ+6Q4tU+K0429Gv9fmqapymqfDn1To68rjunro8f0jbdOFd46VVTVq7rWL58/qG/89fqm6ZzDaHLYbYpx2ppmLRyh0OJq/nDY5HI0zno0hhVDTodNdlvjv+02Q0YoEDbOVNX5A9pbXqVAINg022LKDErB5semkBgIfjc7Y0pyt3HKNPVdSGkIhmbZmmd86v0BSY0zOM0zbxcru81QrOu7cNj4YQvb94bNkKe6PtQ+NBtoNO53w5BsjckwNMPnsBvq1j5BMU572H4ONIXDUCBvCIZmLZv3cfPsZp0voNr6BtXWBxqDpqRj9Q06Vt8geSJ7n4YUCmjxTeEsLtbZFNYaQ1tczHePcTF2xTXNpMW6Gh+djot3BvNCFFHQWr9+vQYNGhQKJJKUl5enKVOmaMOGDfrRj37Uar9PPvlE1dXVysvLC21zuVwaOnSo3nvvvbDx09PTww7t5eTkKCkpSevWrVNmZqZ8Pp8+/PBD/fa3vw17jTvuuEPvvPOO9u/fr27duqmoqEjBYDBshispKUk5OTlav359KGid7XuKhq+/qdGSvxWrwlunqlq/amr98jUET9svMd6lLu3ildbFrbTObqV2cXOzZ1wSDMPQFW1jdEXbGPW6OrnF8z5/QJXV9aqubVB10/+Z6lq/6nwNoWDh8zf+8gs2h5DjZlUaZ7kUmu2y2w05HfZQAHLajw9KjTM6xx8Wij3u0JDLaZfDfm7PJTMMQ9V1fsW67PJFEIJcTrtuuKadEmKdoUNgrQma5nehy9fQ9Pjd4c7mgHb8o78pWDTO/AUUCBwXPgKNs1SmJJnfHf40TVM2m9E4y9U0w9V4CK7x0WG3NR7ybA6gDpucdiMUmpr3ffMsZcwJh0BjzmDfN+/LrbuPWrIvz4RpmvI1BJtCV4OO1TWGrWN1Daqp86umrkHHmh5rav1h22vqGv+oMKWmzxt0RHVnVYfd1rxvj5u9dNkV0/RHgKspoDb/H2h+dBw3g+mwf/d1szc/Nh/CPu6x+Q8GW9PX3mY0/zGh774fmmY/DX23LdbluGiuSI6oypKSkhbnQbndbrVv314lJSWn7CepxblRPXr00Kuvvqq6ujrFxsaqpKSkRRvDMJSamhoaY+/evfL7/a2O1fxa3bp1U0lJiVJSUpSYmNii3dKlS7/3ezodm81QcvK5vZFuXHyMHvpJ21afO/Gvr8YfUDbZ7QbTyOdAommqQ7sERfJz1DAaZzC6dXRH3M/psJ3V1+181fl9ajzfOl3Yk9Lf29l+zS+Wr9/5dLHvS7PpPLLgCYdhGw/Lhp9nFv5c02O030CE2ibEnPMLYWy2c/91jChoeb1eud3uFtsTExPl8Zx8ftPr9crlcikmJnwWxe12yzRNeTwexcbGyuv1hs6dOtn4zY8n1tH8efPzJxvL7XaH1Xq27+l0jKawcy4ltHEpoc2leYL+hc4unfWFAS7n+bug4GKpE+fO9/maIxz7ElbgmmgAAACLRBS03G63qqqqWmz3eDwtDtGd2M/n86m+PvxkVK/XK8MwQn3dbreqq6tPOX7z44l1eL3esOdPNpbX6w2r9WzfEwAAwOlEFLTS0tJanLdUVVWlI0eOtDhn6sR+klRaWhq2vaSkRF26dFFsbOxJxzdNU6WlpaExunfvLqfT2aLdieeBpaWl6ejRoy0O/514HtjZvicAAIDTiSho5ebmauPGjaHZI0lauXKlbDabcnJyTtqvb9++SkhI0IoVK0Lb/H6/Vq9erdzc3LDxd+zYobKystC2TZs2qbKyUjfffLOkxqsVBwwYoFWrVoW9xvLly9WjRw9169ZNknTTTTfJZrNp9erVoTYej0dFRUUtXvNs3hMAAMDp2Kc2L2J1Bnr27KklS5Zo48aN6tChgz766CPNnDlTo0aN0p133hlqN2bMGL300ku67777JEkOR+PKzIWFhYqPj1dtba1mz56tnTt3atasWaFDdKmpqXr//fe1YsUKde7cWdu3b9f06dPVv3//0EKmktS1a1fNmzdPR44cUVxcnN5880299tpreuaZZ9SzZ09JUkJCgsrLy/Xqq68qJSVFFRUVmjFjhmpra/Xss8+GTsw/0/cEAAAQKcOMcOGP4uJizZgxI+x2Nfn5+WG3q7n33nt14MABrV27NrTNNE3Nnz+/xS14srOzw8Y//hY8DodDQ4cO1ZNPPtniFjxr1qxpcQue5oVJmzXfgmfZsmWqqalR37599dRTT4WWgojkPQEAAEQq4qAFAACAM8PyDgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKB1hjZs2KDHHntMt99+u9LT0zV9+vRW2/l8Ps2cOVM5OTnKysrSuHHjWtziR2pcu2vcuHHKyspSTk6OZs2aJZ/P16LdkiVLNGzYMGVkZGjEiBH629/+1qJNVVWVnnzySd14443Kzs7Wr3/9ax0+fLhFu08++UR33323MjMzNWTIEM2fP1+Xy+oeZ7q/Lzd79uzRM888o5EjR6p379666667Wm13vr8Pm9fdu+WWW5SZmam7775bn376aYuxysvL9cgjjyg7O1s33nijJk+e3Oo9Ti8kK1as0IMPPqjc3FxlZWVp5MiRWrp0aYt9wD4/d9atW6df/OIXGjhwoK6//nrddtttevbZZ1vc53bt2rUaMWKEMjIyNGzYML3xxhstxrqQf8Zf6GpqapSbm6v09HR99tlnYc9d0t/vJs7Is88+a95xxx3m448/bvbv39+cNm1aq+2efvpps1+/fuaSJUvM9evXmz/72c/MwYMHm16vN9SmsrLSzMnJMX/+85+b69evN5csWWL269evxZjvvPOOmZ6ebj7//PPmpk2bzKefftrs3bu3uWXLlrB248ePN3Nzc813333XfP/998277rrLHDFihOn3+0NtysrKzKysLPOhhx4yN27caL7yyitmnz59zJdffvkc7qUL05nu78vRe++9Z+bm5pqPPPKIedddd5l33nlnizbR+D4sLCw0+/TpY77yyivmxo0bzYceesjMzs429+7dG2rj8/nMu+66y7zrrrvMNWvWmO+++66Zm5trPvDAA+d4L51bP/nJT8z8/Hzz3Xff/f/t3XlQk8cbB/AvUU41ctQDAS2hEBmBEg4x6mBRsILO2Gq98D6qqGgVbSsWS/3ZeiAUR8ADrWe9bx2BClovrqq0Wm1RA8ihQhUVokCIZH9/OLzjS6KiEs7nM5OJ2Xezuzysr4+7b96wlJQUFh4ezrp3786ioqK4OhTzunX06FG2atUqlpCQwNLS0tjOnTtZz5492eTJk7k6ly5dYvb29mzJkiUsNTWVRUZGMrFYzOLj43ltNdZzfFMQFhbGevfuzezs7Ni1a9e48uY+3ynRqqWqqiruz15eXhr/kb5//z6zt7dne/fu5coeP37MnJ2dWWxsLFe2YcMG5uzszB4/fsyV7d27l9nb27PCwkKubODAgSwoKIjXx6hRo9i0adO41xkZGczOzo5duHCBK8vKymJisZidPHmSK1uyZAnz8vJiCoWCK4uIiGBubm68suaotvFuiV6e199++63GRKu+52FFRQVzcXFhERERXB2FQsG8vLxYaGgoV3bixAkmFotZVlYWV3bhwgVmZ2fHrl69+jZhqFfFxcVqZSEhIczFxYX7fVDMtW/fvn3Mzs6OOwdMmTKFjRo1ilcnKCiI+fr6cq8b8zm+sZPJZMzZ2Znt2bNHLdFq7vOdtg5rSSB4c6guXrwIlUqFQYMGcWXGxsbo04/vQTEAABBnSURBVKcPzp8/z5WdP38eUqkUxsbGXJmvry9UKhWSk5MBAPn5+bhz5w58fX15ffj5+SE1NZVbgj5//jyEQiHvC7BFIhHs7e3V+hwwYADva4X8/PxQWlqKP//8s7ZhaJJqE++W6k3zuiHmYUZGBp4+fcrrU09PDz4+PmpticViiEQirqxPnz4wNjbGuXPn3iYM9crU1FStzN7eHk+fPkVZWRnFvJ5Unw+USiUqKyuRnp7OO3cDL+KUlZWFgoICAI37HN/Y/fjjjxg9ejSsra155S1hvlOiVYeys7NhZmbGfUl2NRsbG94efnZ2Nu8XBwBCoRAdOnTg6lU/15yUNjY2UCqVyM/P5+pZW1tDR0eHV08kEnFtlJWV4f79+2p9ikQi6OjoaLy+oDmpTbyJZg0xD6ufa9azsbHBvXv3UFFRwdWrWUdHRwfW1tZN7vd65coVdOrUCW3btqWYa1FVVRUUCgVu3LiBmJgY9O/fH5aWlsjLy4NSqdT48wPgxakxnuMbu4SEBNy6dQuzZ89WO9YS5jslWnWotLQU7dq1UysXCoUoKSnh1RMKhWr12rdvz9Wrfq5Zr/p19fFX9flyW9UXfNZsS09PD4aGhryxNUe1iTfRrCHmYWlpKfT09KCvr6/WJ2PsrfpsCi5fvoy4uDhMmTIFAMVcm7y8vODk5IRhw4ahQ4cOiIiIAPD+MW/oc3xjVl5ejpUrV2L+/Plo27at2vGWMN9b17pmMyOXy2v1qQ0rKyveEiQhhNSVwsJCzJ8/Hx4eHpgwYUJDD6fZi42NRXl5OWQyGdavX4+AgABs3bq1oYfVrK1fvx5mZmYYPnx4Qw+lwbTYRCshIQEhISFvrBcXF8ctH7+JUCjU+LHP0tJS3lKzUChU+1gx8CJzr65X/SyXy9GhQwdeWy8fFwqFKCwsfG1b1Rl5zT4rKytRXl6utgze3NQm3kSzhpiHQqEQlZWVUCgUvP9xlpaWQkdHh1dP09+3kpISmJubv9sPXI9KS0vx5ZdfwtjYGFFRUdz1chRz7enevTsAQCKRwNHREUOHDkViYiI++ugjAOpx0hTzxniOb6zu3r2LLVu2ICYmhotHWVkZ9/zs2bMWMd9b7NbhiBEjcPPmzTc+aptkAS/2ex8+fKi2pFhzn1fT3rpcLseDBw+4etXPNetlZ2dDV1cXVlZWXL2cnBy1e4Tk5ORwbRgZGcHc3Fytrer31dyDbm5qE2+iWUPMw+rnnJwctT67dOkCAwMDrl7NthhjvD4bq4qKCsyYMQNyuRybN2/mbU9QzOuHWCyGrq4u8vLy0LVrV+jq6mqMOQBenBrjOb6xKigogFKpxPTp0+Hu7g53d3cEBAQAACZMmIDJkye3iPneYhMtbejbty8EAgFOnTrFlZWUlODixYvw9PTkyjw9PZGSksJl7MCLFTaBQMB9osLKygoffvghEhISeH3ExcVBKpVy25menp4oKSlBamoqVycnJwf//POPWp+nT5+GUqnktSUUCiGRSOooAo1TbeJNNGuIeeji4oK2bdsiPj6eq6NUKnHq1Cm1tjIzM3Hnzh2uLDU1FU+ePEG/fv3qJgBa8Pz5c8ybNw/Z2dnYvHkzOnXqxDtOMa8fV69ehVKphKWlJfT09ODh4YHffvuNV6d6R8PS0hJA4z7HN0b29vbYsWMH7xEcHAwAWLp0KUJDQ1vEfG/1ww8//FDr2i3Y3bt3kZKSAplMhqSkJOjr60NPTw8ymYxbdm7bti2Kioqwfft2mJmZ4dGjR1i2bBnKy8uxYsUKbonS1tYWBw4cQEpKCjp27IhLly5h1apVGD58OAYPHsz1aWJigujoaKhUKgDApk2b8Pvvv2PFihXcsqW5uTn++usvHDx4EJ06dUJ+fj5CQ0PRoUMHLF68mNuOEIlE2Lp1KzIzM2FsbIwzZ84gOjoac+bMgbu7e32Gst7VNt4tUXl5OU6fPg2ZTIbk5GQ8fPgQnTt3hkwmg6mpKQwNDet9HrZu3Ro6OjrYuHEj2rRpg/LyckRERODWrVsICwvjlvWtra2RlJSE+Ph4mJub499//8X//vc/uLm5Ydq0aQ0QzdoJDQ3FyZMnMW/ePJiZmaGwsJB7mJqaolWrVhTzOhYYGIi8vDzI5XIUFhYiKSkJP/30E6ysrLBo0SK0atUKFhYWWL9+PR48eABDQ0McPnwYu3btwvfffw9bW1sAjfsc3xjp6+vD0tKS91AoFDhy5AgCAwPh4OAAoP7/rav3+V7rO261cIcOHWJ2dnYaHy9TKBRs5cqVTCqVMicnJzZp0iQmk8nU2pPJZGzixInMycmJSaVStnLlSo03Dt2/fz/z8fFhPXr0YEOGDGFnzpxRq1NaWsqCg4OZm5sbc3Z2ZoGBgRpvxHnlyhU2YsQI5uDgwDw9PdnGjRuZSqV6j6g0HbWNd0uTn5//ynmdlpbG1avveahSqdiGDRuYp6cnc3BwYCNGjGAZGRlqbRUWFrLAwEDm7OzM3NzcWHBwMJPL5XUQGe3x8vJ6Zczz8/O5ehTzurNx40Y2dOhQJpFImLOzMxs8eDBbs2aN2rir7zbeo0cP5uPjww4cOKDWVmM+xzcFaWlpajcsZax5z3cdxlrIl90RQgghhNSzxrvmSAghhBDSxFGiRQghhBCiJZRoEUIIIYRoCSVahBBCCCFaQokWIYQQQoiWUKJFCCGEEKIllGgRQgghhGgJJVqEEEIIIVpCiRYhpF5ERUVBLBa/1XvS09MhFovVvgetsRGLxYiKiqr3fqvjk56eXu99E0JqhxItQghp5Hbt2oXDhw839DAIIe+AEi1CSL2YOXMmrl271tDDaJL27NmDI0eOqJW7u7vj2rVrzf6L4QlpyijRIoRoXVlZGVq3bg19ff2GHgrn+fPnqKysbOhhvBeBQAB9fX0IBHQqJ6Sxor+dhJA6VX0tlkwmw4IFC+Du7g5/f3+N12glJydjzJgxcHNzg0Qiwaeffoqff/75te1XVlZixowZcHV1RUZGRq3GVFBQALFYjF9++QXbtm2Dt7c3HB0dkZWVxbW5du1a+Pj4wMHBAf369UNYWJhaIlZZWYnly5ejV69ekEgkCAgIQGFhoVp/ixYtQv/+/V8Zm5qOHTuGL774Ah9//DHc3d0xduxYXLx4EQDQv39/3L59G3/88QfEYjHEYjHGjx8P4NXXaMXHx2PYsGFwcnKCh4cHFi5ciKKiIrUxSiQSFBUVYdasWZBIJOjVqxdWrVqFqqqqWsWVEPJmrRt6AISQ5umrr75Ct27dMH/+fDDG8OjRI97x27dvY8aMGRCLxZg7dy709PSQm5v72uSpoqICs2bNwvXr17F161Y4OTm91ZgOHz4MhUKBkSNHQk9PD+3bt4dKpcLMmTNx5coVjBw5EjY2Nrh16xa2b9+OO3fuYN26ddz7v/vuOxw/fhxDhgyBi4sL0tLSMH369LcLTA3R0dGIioqCRCLB3Llzoauri6tXryItLQ19+/bF4sWLsWzZMhgZGSEgIAAA8MEHH7z2ZwwODoajoyOCgoJQXFyMHTt2ICMjA0ePHoVQKOTqVlVVYerUqXBycsI333yD1NRUbNmyBVZWVvD393+vn4sQ8gIlWoQQrejevTsiIiK41zU/lZecnAylUolNmzbB1NT0je09e/YMAQEBuH37NrZv3w57e/u3HlNhYSESExN5/R07dgwpKSnYuXMn3NzcuHJbW1uEhoYiIyMDLi4uyMzMxPHjx+Hv74/Q0FAAwNixY7FgwQLcvHnzrccCALm5uYiJiYGPjw/Wrl3L2wJkjAEAvL29sWbNGpiYmGDo0KGvbU+pVCI8PBx2dnbYtWsXt1Xr6uqKGTNmYNu2bZg7dy5XX6FQwNfXF7NnzwYAjBkzBp9//jkOHjxIiRYhdYS2DgkhWjF69OjXHq9eWTl9+jRUKtVr68rlckydOhXZ2dnYuXPnOyVZADBw4EC1pC4hIQE2NjYQiUR49OgR9+jVqxcAcNty586dAwBu267axIkT32ksAJCUlASVSoXZs2erXWelo6Pz1u1dv34dxcXFGDNmDO96uE8++QQikQhnz55Ve8+YMWN4r11dXVFQUPDWfRNCNKMVLUKIVlhaWr72uJ+fHw4cOICQkBBERERAKpXCx8cHgwYNUks6li9fjsrKShw5cgS2trZ1Oqbc3FxkZWVBKpVqfE9xcTEA4O7duxAIBOjatSvvuEgkeufx5OXlQSAQwMbG5p3beNm9e/cAANbW1mrHRCIRrly5wivT19dXSzzbt2+PkpKSOhkPIYQSLUKIlrzpE4YGBgbYtWsX0tPTcfbsWVy4cAFxcXHYt28ftmzZglatWnF1BwwYgLi4OMTGxiIsLOydP2VnYGCgVqZSqWBnZ4fg4GCN7+ncufNb9/Oq1ajGdpH5yzEmhGgHJVqEkAYjEAgglUohlUoRHByMDRs2IDIyEunp6ejduzdXz9vbG3379sWiRYvQpk0bLF26tM7G0LVrV2RmZkIqlb52u87CwgIqlQp5eXm8Vazs7Gy1ukKhEKWlpWrl1StOL/etUqmQlZX12u3Q2m4jdunSBQCQk5OjtkKXk5PDHSeE1B+6RosQ0iCePHmiVladbGi6v9Vnn32GkJAQ7N27F6tXr66zcfj6+qKoqAj79+9XO1ZRUYGysjIAgKenJwBg586dvDrbt29Xe1/Xrl0hl8uRmZnJlf33339ITEzk1fP29oZAIEBMTIzadWrVF8MDgKGhocbErSYHBweYmZlh7969vBieO3cOWVlZ+OSTT97YBiGkbtGKFiGkQcTExODy5cvo168fLCwsUFxcjN27d6Nz585wdXXV+J5x48bh6dOniIyMRLt27bjbHbyPoUOHIj4+HqGhoUhPT4eLiwuqqqqQnZ2NhIQEbN68GY6OjrC3t8eQIUOwe/duyOVySCQSpKWlITc3V61NPz8/hIeHIzAwEOPHj0dFRQX27NkDa2tr3Lhxg6vXrVs3BAQEYN26dfD398fAgQOhp6eHv//+Gx07dsSCBQsAAD169MCePXuwbt06dOvWDaamphqvKdPV1cXChQsRHByMcePGYfDgwdztHSwsLDBp0qT3jhch5O1QokUIaRD9+/fH3bt3cejQITx+/BgmJibo2bMn5syZg3bt2r3yfQEBAZDL5VyyNXbs2PcaR/WK0rZt23Ds2DEkJibC0NAQlpaWGD9+PO/C8uXLl8PExAQnTpzA6dOn4eHhgdjYWPTr14/XpomJCaKjo7Fy5UqsXr0alpaWCAoKQm5uLi/RAl7cb8zS0hK//vorIiMjYWhoCLFYzLuVw+zZs3Hv3j1s3rwZz549Q8+ePV958f6wYcNgYGCATZs2ITw8HEZGRvD29sbXX3/Nu4cWIaR+6LCX16cJIYQQQkidoWu0CCGEEEK0hLYOCSFNVlVVldpX+9RkZGSENm3a1NOICCGEjxItQkiTdf/+fQwYMOC1dQIDAzFnzpx6GhEhhPDRNVqEkCZLoVCo3e28JisrK1hZWdXTiAghhI8SLUIIIYQQLaGL4QkhhBBCtIQSLUIIIYQQLaFEixBCCCFESyjRIoQQQgjREkq0CCGEEEK0hBItQgghhBAtoUSLEEIIIURL/g/hqGEGM9rytgAAAABJRU5ErkJggg==" -} -``` - -#### Create Joint Plot - -This action is used to create a joint plot that illustrates the distribution between two data series: [https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot](https://seaborn.pydata.org/generated/seaborn.jointplot.html#seaborn.jointplot). - -##### Input - -|Name|Type|Default|Required|Description|Enum|Example| -|----|----|-------|--------|-----------|----|-------| -|color_palette|string|dark|True|Color palette of the plot|['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']|dark| -|csv_data|bytes|None|True|Base64 encoded CSV data from which to create the plot|None|UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==| -|kind|string|scatter|True|Kind of data representation to use in the created plot|['scatter', 'reg', 'resid', 'kde', 'hex']|scatter| -|margin_style|string|dark|True|Style of the margin of the plot|['darkgrid', 'whitegrid', 'dark', 'white', 'ticks']|dark| -|x_value|string|None|True|Column containing values for the X-axis of the plot|None|ExampleColumnName| -|y_value|string|None|True|Column containing values for the Y-axis of the plot|None|ExampleColumnName| - -Example input: - -``` -{ - "color_palette": "dark", - "csv_data": "UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==", - "kind": "scatter", - "margin_style": "dark", - "x_value": "ExampleColumnName", - "y_value": "ExampleColumnName" -} -``` - -##### Output - -|Name|Type|Required|Description|Example| -|----|----|--------|-----------|-------| -|csv|bytes|True|Base64 encoded CSV data used to generate the plot|c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK| -|plot|bytes|True|Base64 encoded PNG plot data (can be attached to an email)|iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==| - -Example output: - -``` -{ - "csv": "c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK", - "plot": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAJICAYAAAA6gXNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XmYFPWdP/B39X3MjYgIGGZYA5iIDEaUH2QQI1EwG5JN9sFEMYaRGC8C6vNo8CLGrMeKGsRjONTENZsY3azZgAqiwhIxF5CsEVGYQScqoA5z9H3V74+xmurq6rOqeqp63q/n4YHuqX7Xl++35luf/lYfgiiKIoiIiIjIVGxD3QAiIiIiysYijYiIiMiEWKQRERERmRCLNCIiIiITYpFGREREZEIs0oiIiIhMiEUaERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIjIhFikEREREZkQizQiIiIiE2KRRkRERGRCLNKIiIiITIhFGhEREZEJOYa6AVTYRx8NDHUTiIioyo0cWTvUTSAFrqQRERERmRBX0oYhQRAqti9RFCu2LyIiomrCIm2YSQKIROIV25/H7YC9YnsjIiKqHizShhFBEBCJxPHmwR7EEynD9+d02HDK+CbUeJxcUSMiIioRi7RhKJ5IIRZPDnUziIiIKA++cYCIiIjIhFikEREREZkQizQiIiIiE2KRRkRERGRCLNKIiIiITIhFGhEREZEJsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZEIs0IiIiIhNikUZERERkQizSiIiIiEyIRRoRERGRCbFIIyIiIjIhFmlEREREJsQijYiIiMiEWKQRERERmRCLNCIiIiITYpFGREREZEIs0oiIiIhMiEUaERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIjIhFikEREREZkQizQiIiIiE2KRRkRERGRCLNKIiIiITIhFGhEREZEJsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZEIs0IiIiIhNikUZERERkQizSiIiIiEyIRRoRERGRCTmGugFU3QRh8A8gVGyfoihWbF9ERERGYZFGhrHbBdhsNgyEEwAqVzh53A7YK7Y3IiIiY7BII8PYbQLCsQQOdPchlkhWZJ9Ohw2njG9CjcfJFTUiIrI0FmlkuHgihVi8MkUaERFRteAbB4iIiIhMiEUaERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIjIhFikEREREZkQizQiIiIiE2KRRkRERGRCLNKIiIiITIhFGhEREZEJsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZkGOoG0BERFRNBEGo6P5EUazo/qhyWKQRERHpJAkgEolXdJ8etwP2iu6RKoVFGhERkQ4EQUAkEsebB3sQT6Qqsk+nw4ZTxjehxuPkiloVYpFGRESko3gihVg8OdTNoCrANw4QERERmRBX0oh0whcLkxY8fohIiUUakQ74YmHSgscPEalhkUakEV8sTFrw+CGiXFikEemELxYmLXj8EJGSIPJplOklk/o9u06JIuKJFCox6oIAOOw2JJKV2Z+0T6fDBluFX99TyX4Fhu7/Scbg8VM9rDyWdjvfS2g2LNKIiIiITIhlMxEREZEJsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZEIs0IiIiIhNikUZERERkQizSiIiIiEyIRRoRERGRCbFIIyIiIjIhFmlEREREJsQijYiIiMiEWKQRERERmRCLNCIiIiITcgx1A6iwZDKFnp7gUDeDiIiq2MiRtWU/luep3LT0K1fSiIiIiEyIRRoRERGRCbFIIyIiIjIhviZtmPB4nPD5XIhGEwgGo7pmOxw21NS4IYpAIBBFMpnSLVsQAJ/PDbfbgVAohkgkrls2ALhcDvj9LiQSKQQCUYiiqFu2zSagpsYNm82GYDCKeDypWzYAeL0ueL1ORCJxhEIxXbOdTjv8fjdSKRHBYATJpH79IggC/H4XnE47QqEYotGEbtkA4HY74PO5EY8PHus6Dins9sFjXRAEBAIRJBL6HesA4PO54PE4EQ7HEA7re6w7nXbU1LiRTA4e66mUvse63++Gw2FDMBhDLKbvmMrnr1BI3zG16vwliiLC8RT6QnG4HAIafC7YbYJu+WQOgqjnWYkMoeUFmQ6HDbW1HtjtxxZNRVHEwEBU80QqCIDf74bH48y4PxyO6zKRut2O9AlxcH8C4vGkLidHu11ATY0HLpcjozALBKK6TKQ+nws+nyt9WxAERCJxBIPaT45Opx21tR7YbAIEQYAoikilRAQCEcRi2gpBQRgsLD0eZ0a/hMMxBIPaC0GPxwm/341PhxSCICAWS+hycrTbbaitdcPpPDamoggEgxFEItqLBr/fDa/32LEuCALC4finhaC2MXW57KipyRxTqZjSWtxLTxbc7swxDYViuhT3Xu/gmEoEQUA0mkAgENF8rOeavwKBqObi3srzVzyZwtFgHFFZjgCg3udEjdue3mep+MYBY2jpVxZpFlDOwS+tVni9LoiimPFLK90ePDmWt0oyOAF5IAjImhBEUdQ0kUqrFVIBpWw7gHTBU87RKy+g1LKTyRQGBsqbSJUnWzkpPxiMlrVKIq1WSAWU2phGo/GyV0k8HidqagZPtmptHywEyyvuB1crPHA67TnHtNyTo7RaIRVQav0SjycxMBApqxB0uRyorR082aof64NjWk5xP1hAeeB2qx/rUnFf7iqv1+uC3599rEv5qZSIgYFIWYWgtDInFVBqY1puIVj8/FVecW/V+SslihgIJ9Cf50mHwyagye+E22kvue0s0oxRNUXatm3bsG7dOuzfvx+BQACjRo3Cueeei6uvvhq1tcf+ky+//DIeeOABdHV14cQTT8T3vvc9fOMb38jIisViuP/++/Hb3/4WwWAQra2tuOWWW9DS0pKx3YEDB3DHHXdg9+7d8Pv9WLBgAZYtWwaXy5Wx3a9//WusX78eH3zwAZqbm7F8+XLMmTMnY5uBgQHceeedeOmllxCPx/HFL34RN998M44//nhN/VLqwS9frcj3jOrYybH4VZLB1Qr1k60yu9SJNN/JVi2/1FUSl8vx6eXH7JOtWttLWSVRrlYUyi91lUS+WlHMmJZyclSuVhQa01JWSZSrFYXHtLSTo3y1orhjvfhCULnaWqhfSl0lyfVkIVfbSynulaut+bJLXeVVrrYWyi91ldf4+evYaque8xeQudpa3PxVfHEfjiVxNBhDsc+pfS47GnzOki6BskgzRtUUac899xz27duH0047DQ0NDXjnnXfw4IMP4nOf+xwee+wxAMCf//xnXHLJJfjmN7+J+fPn4/XXX8ejjz6KBx54AOeff34669Zbb8WmTZtw4403YtSoUXj00UfR3d2NjRs3pgu+vr4+XHDBBRg/fjwuv/xyHD58GHfddRe++tWv4tZbb01nbdy4Eddddx2+//3v46yzzsKmTZvw7LPP4qmnnsLUqVPT27W3t2P//v244YYb4Ha78cADD8Bms+HZZ5+Fw1H+y/+KPfjzrVbkU8wqSSkFlDIbKHxyLPZkq8wuZpUk32pFofxiJtJ8qxWF2l5olUS+WlHKJYxiVknyrVYUygYKF4L5VivyZRdzcsy3WlEov5hCsNgCSpkNFF4lybfaWih7cJU3ikRCfUzzrbYWk1+oEMy32povu5hVXivPX/lWW/NlF1PcJ5IpHA3FEYmXvmIoAGjwOeEv8hIoizRjVE2Rpubpp5/GLbfcgu3bt2PUqFFob29HMBjEL3/5y/Q21113Hfbu3YtNmzYBAA4dOoRzzjkHt912GxYuXAgA6O3txZw5c3DllVdiyZIlAICOjg48+uijeOWVV9DQ0AAA+NWvfoUf/ehHeOWVVzBq1CgAwHnnnYfPf/7zWLVqVXqfF154IWpra7Fu3ToAwO7du3HhhRdiw4YNmDVrFgCgs7MT8+fPx3333Yf58+eX3QeFDv5SVityybdKUk4BpZavdnIsdrWiUDagPpGWc7JVZueaSItdrSim7cqTYymrFYXarrZKUuxqRaF8tVWSYldbC2UD2ask5Z5sldmDY5rAwEBmIVjsamuhfLXivpTV1kJtVyvui11tLZSvtspb7GproWwgu7jXc/5SewmHVeYvZXEviiL6Iwn0h7W/ntJpF9Dod8HtyP+BDizSjFHVH2YrFU/xeByxWAx/+MMfMlbMAGD+/Pk4cOAA/vGPfwAAduzYgVQqlbFdQ0MDZs6cie3bt6fv2759O2bMmJHeBwDMmzcPqVQKv//97wEA3d3dOHjwIObNm5e1z507dyIWi6Wz6urqMHPmzPQ2LS0tmDx5csY+9ebxONHUVAOPx6lpEpIe53LZ0dTkh8/ngt1uQ329F3V1Xk3ZUr4gCKir86K+3gu73Qa/34XGRj+cn752QkvbBUGA1+tEU5Mfbrcj4/+hR784HDY0NPg+XdUSUFvrQUODT9PJXJ7v97vR2OiDw2GH1+vEiBGD/w/5NuVmu90ONDX54fU60/+P2trSVrhy5dtsAurrfair88BuF2T/j/JP5tLjBsfUhaYmP1wuR8b/Q58xtaOx0Qe/f3BMpWNTjzEVBKSPEYfDBp/v2P9D3oZy2y71hcfjhNN57P+hx++p3X7sGBksQtxobPSnV3O1jqnUF06n/dP/h37z12BfVGb+8vn0nb+kudztdiAcS+LDvoguBRoAxJMijvRH0ROIIanju3rJeKb8CI5kMolEIoH9+/fjoYcewjnnnIOxY8di//79iMfjWa8rmzBhAoDBlauxY8eis7MTI0aMQH19fdZ2zzzzTPp2Z2dn1mvZ6urqMHLkSHR2dqa3AYDm5uasrHg8ju7ubkyYMAGdnZ1obm7O+kVtaWlJZ+itpsZd8qWqQqQctXcn6pUtnVT0ylXm19V5AcCQfvF4nBnvBtOzX+x2Gxobfeln1nq3Xf4OPL3yjxX3Ds0FSK58mw2orzduTL1eZ9a7NvXKlopivXIz80XU1noAGNMvbrcj/URBfr8e+TYb0v3C+UueLyKSFPFxQN+P1JEEY0mE40mMbvDApmPbyTimLNLmzJmDw4cPAwC++MUvpi8z9vX1ARgspOSk29LP+/v7M95oIN9O2kbaTpkFAPX19enttO6zvr4eb7zxRt7/b7kcDm3P4PIRBEHXyVOZbRQp26ptN6rdRudXql+s3HYjsgHrH+tWbLuR2SEdPi4mn5QIJFMibHYWaVZgyiJt7dq1CIfD2L9/Px555BF8//vfx+OPPz7UzSIiIosw8gkPUaWYskibNGkSAKC1tRWnnnoqFixYgC1btuCf/umfAAx+1IVcf38/AKQvb9bV1SEQCGTl9vf3Z1wCraury8oCBlfHpO2kvwcGBjBy5Mi8+zx06FDeLCIiIqJimf6NAxMnToTT6cR7772Hk046CU6nM+s1XtJt6bVqLS0t+PjjjzMubUrbyV/PpvZ6sYGBAXz00UcZWfJ9yLOcTifGjRuX3q6rqyvroxS6urqyXkNHREREVIjpi7S//vWviMfjGDt2LFwuF84880y8+OKLGdts2rQJEyZMwNixYwEAs2bNgs1mw+bNm9Pb9PX1YceOHWhra0vf19bWhtdeey29KgYAL7zwAmw2W/pdmuPGjcP48ePxwgsvZO1zxowZ6Q+9bWtrQ19fH3bu3JnepqurC2+++WbGPomIiIiKYV+5cuXKoW6E5Oqrr8Z7772HgYEBHDp0CC+99BJ+8pOfYNy4cbjxxhtht9sxZswYPPLII/joo4/g9XrxX//1X3jqqadw66234uSTTwYA1NTU4PDhw/jZz36GESNGoKenBz/+8Y8RDodx5513wu0efJfbySefjF//+td47bXXcPzxx+NPf/oT7r77bnzjG9/ABRdckG5XY2Mj1qxZg1Rq8POU1q1bh1deeQV33nknRo8eDQAYPXo09uzZg2eeeQajRo1Cd3c3brvtNowcORIrVqyAzVZ+PSyKouoHTHo8zozvtDOClV/TYdW2G91u9kvlcUzVsV+y9QaiCGv8XtJCajwO1W8iUL4DvBS5zlOkrV9N9WG2a9euxaZNm/Dee+9BFEWMGTMGc+fORXt7O2pqatLbbd26Netrob75zW9mZElfC/Xcc88hGAxi2rRpuPnmm9Mf1yE5cOAAfvzjH2d8LdTy5ctVvxZq3bp16a+Fuvbaa3N+LdSWLVuQSCQwa9Ys3HzzzekPxS1Xrg8JbGjwpT+jxwhWfuGtVdtudLvZL5XHMVXHflF38MN+9PRHDN3HCfVuOFWe4Gv9MNujR0Pp2yYqLYZcVX/jALFIK4dV284TlzqrthvgmObCflFn1SItkUzhHx8eex24x+2AcWcna9HSr6Z8dycRERFZhyiKePNgD+KJFJwOG04Z34SaT7/WjsrHIo2IiIg0iydSiMm+85W0M/27O4mIiIiGIxZpRERERCbEIo2IiIjIhFikEZEl8AXIVAorvrMTABpr3Rh3fA0cBn8GJlkDjwILC4djEEVR95OXPNOobKPzjcpW+9uIfPZLdr6R2RzT7Gy1v43It1q20f1e53fhuAYvPtfShJENXl3zAcDrtMGh8kG2ZE58d6eFRaMJxONB1NS44XY7NX8ukPzx8hxpItL6zDRXjh75am2XT6Z6tV2ZpcdnMam1UX4SsMKYquXrka02pnrmSzimmfkSq/aLfB9Wnb9sAMYeX4PjGrx471A/ghFt30JgF4BGvwteFz+9zEq4kmZxqZSI/v4I+vpCSKXKf+aYa2JW3i4nv1C2cjLVK1+eXW6+VOgps+T55T5jN7LPjc7PVwDr0S/5xlS+XTkKjamW/GoYUx7rpWUbPX95XHZM/EwTTjqhFg57eYVgnceBExo8LNAsiEValYjFkujpCSIUKu0SaL4JSK7cic7I/HwnFT2y1R5f6fxyTo6V7Bej8ovJLqdf1Nqmli1/jFH5Zh3TfMx4rBebrfaYocwvdUxH1HnwueYROK6ES6Buhw0n1LtR73PCZtHX6A13LNKqTCgUQ09PELHY4AcK5pow8q1W5FPsRFrsBKTMlj8+X7baY4Yyv5TsUvul2Hwt/VLsmJaab/UxLWaVpNxjfTiMaTmXAovtl+E4f9lsAk4aVYtJn2mEz5P71Uo2ARhR48LIWpfq1z+RdXD0qtDgJdAw+vrCqpdAi12tyCfXhFTuBKTMzjWRas3Pt0pSbgGllq+WrdaGcrKVeUbnW21Mldl6jaky3+pjqke/qI1pKautpbZbftvMY2r0se51OzDxpEaMG1ULu+JNALUeB0Y3eOBz2cv+P5B58I0DVSwWS6CnJwGfzwWfzwXg2C+5Hr+8+SZSvfKl3HKekRfKlnKlk5Ve+crVFz0m/nz5RmQbmV+JMZXfZr9ktl3PfpFyKnWsc0yPZQPAcfUeNNa68U53L1LJFBr9Tq6cVRkWacNAKBRDLJZAY6MfgH4ThUSajIx41qb3CUUtX+8JVJ6t9m8j8o3ItvKYqv1bz2wj+obH+tDkW/1Yt9uAExo8iMcSXDmrQiy5h4lksrx3HhEZpZQXcBNRbk6HjQValWKRRkRERGRCLNKIiIiITIhFGhEREZEJ8Y0DREREpJnTYcv4m7RjkUZERESa2AQBp4xvSt/2uB18c5AOWKQRERGRJoIA1HqdkOoyFmj6YJFGREREmokiizO98cIxERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIjIhFikDRM2G7/XjYioGtntPJVXK47sMOD1OtHY6IMoioa880aeqXe+1Gartt2obCmT/aKeL+Vate0c0+x8I/tF+nJyq85fXq8LtbUePhmvQvwIjirmdNpRU+OG3W5LT0LAsV9s+X3lkE9uRuXLc+QTnZFt15ot5UgEQcgoGvTul1z3lZtt5X6xctul3Hz3lZvNflHPVsuw6vzldjvgdjsQDEYRDsc15ZN5cCWtCgmCgNpaDxoafFkFmvRzSbnP7pQTs/zfWp+VFpNtZL6WZ73SY5VtNbLdRufr2S9q2Wr7LzfbyHyOaXZ2tfaL0dlG5vv9bjQ2+uB02svKJ3NhkVZlvF4nRozww+0eXCTN9Yyt3Mki3+RZqXwt2WonFT3yS+mXck6O1dIv+dqupV8KZcu3N2JMS80uNt8KY5ov24zHeqFso/MrMaZ2uw0NDT5eAq0CvNxZJRwOG2prPekXkBa7nK581pjrccrJpJj8Ui6tlHMZoNhLK7ku9xTKVnt8rny1xxXKL7btpeTKty1mTK3cL+W2XX6y06vtyj7nmGbml9IvpWbLH8v561g2wEug1YAraRYnCAJqajxobPSnL22WMlHIcyTKCa2Y1YpC2bmeUZczMSuz5VlG5efKLuaZbaFsZTuVt8vJNjq/kmOqZGQ+xzT3mFaqXzh/6Z8vXQJ1OHgJ1Gq4kmZhLpcDtbUeSL+75U78ErWJrtRncIXy5c8cc+273GwpV4+TYa5s6W+9+0Wer/Yzrdlq+VYaUz1zlRlWPdaV2Xq0W8qplmPdamNq5Pxlt9vQ2OhDOBxDIBDVnEuVwSLNwnw+FwRBv8lZoszTM1/PSTNXfjmXHorNVvtbz/xCl1W0ZAOFL9toybbymOa6rVe2UWNq9WPdqOx8t/XItvKx7vW6EA7HkEyW98YFqixe7rQ4oyYLoPx3Hw01I/uEhg7HNZvV+4TzVzarjynpi0UaERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIg0s+rrAM2MRRoRERFpxjc96I9FGhEREZEJsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZEIs0IiIiIhNikUZERFWHHwdB1YBFmoUlkynDPjxQFEUIgmBIvpRpVLaV225Uu43Or0S/GJlvZDbHVD3b6H6R/22lbKPHNJUa/EPWwCLNwgYGIggGo+lfbD3IJwnlfXpk59qfHqQcZdv1zC72fi350gRt9JjqlV3K/XrkW7HtHFP1nEr1C+evwZxYLIGjR4PgFwNYB4s0iwuH4+jpCSIaTQAo/5daOXHK/63HKoZavjxbS36htmudSHO1Xe3n5WRLJxVl27XmV0O/KDP16heOafH51dAvWrJz5Vtp/kqlRPT2htDfH+EqmsWwSKsCqZSIgYEIentDSKVK/4XONUnIlTsZGZltdH6uk4oyu5yJlP2SO1uZUajd5eQXaruWbGUb1bKV2w91Po/1ymcbnS+NUygUQ09PEPF4sqS2kTmwSKsi8XgSPT1BhEKxoibSXKsVuZQyWeRardA7P99JRUu22uOGKr+Uk+Nw7Bejs43M55hmZ5faL6Vkq7WrULaR+UaOaSyWSJ8PyLocQ90A0l8oFEMkEkdNjRtutzM9GUjkt4udmOWUJ0ZlRikTZ67sXDl6tD3f5F7OSUtte2Wfy7PLabf0OCljqMa0nPxi+kWPMc2Xr9aWYrPV2qnM5phWX79Ydf5KpUQEAmHEYlw5qwamWkl7/vnnccUVV6CtrQ1Tp07FggUL8Mwzz2RMJosWLcLEiROz/hw4cCAja2BgACtWrMD06dPR2tqKpUuX4siRI1n73LVrFxYuXIgpU6Zgzpw5WLt2bdYzFVEUsXbtWpx99tmYMmUKFi5ciD179mRlHT58GNdccw1aW1sxffp03HTTTQgEAjr1TmlSKRH9/RH09WVeAtUyMSvlu+ykR7ZyMtUrX22VpNRntsXky3P1aLfy8ZUaU60nXHm2sl/0HFOJvF/0HFN5fjWMKY/16pu/pEubLNCqhyAWWjutoIULF2LMmDE499xz0djYiNdeew3r16/HVVddhauvvhrAYJGWSCRwww03ZDx28uTJcLvd6dvt7e3Yv38/brjhBrjdbjzwwAOw2Wx49tln4XAMLiC+++67+NrXvoaZM2fioosuwr59+3Dvvfdi+fLlaG9vT2etXbsWq1evxvXXX4+JEyfiqaeewmuvvYbnnnsO48aNAwDE43H8y7/8CwBg+fLliEQiuPvuuzFp0iR0dHRo6pdkMoWenqCmDJ/PBZ/PBUD7BKRGrxN5rmwjcuX5gPX6xWhWHlMj92HlfrH6sc4xVc9PJFLo7w9rflPAyJG1ZT82lUqhpydU8HLscKSlX011ufORRx5BU1NT+vaMGTPQ29uLxx9/HFdeeSVstsGFv7q6OkydOjVnzu7du7Fjxw5s2LABs2bNAgA0Nzdj/vz52Lx5M+bPnw8A2LBhAxobG3HffffB5XJhxowZ6OnpwaOPPopFixbB5XIhGo2io6MDixcvxqWXXgoAOP3003H++edjw4YNWLlyJQDgxRdfxDvvvINNmzahpaUl3c729nb87W9/w5QpU/TurpKEw3H4/e7CG2pg1ERUiQLHyLZbedIyul+MHFsrjimP9cL7sFp2JcY0Go3zXZtVylSXO+UFmmTy5MkIBAIIhUJF52zfvh11dXWYOXNm+r6WlhZMnjwZ27dvz9juS1/6ElwuV/q++fPno7+/H7t37wYweDk0EAhg3rx56W1cLhfmzp2blTVx4sR0gQYAM2fORENDA7Zt21Z024mIiIgAkxVpav7yl79g1KhRqKmpSd/3xz/+EVOnTsWpp56Kiy++GH/6058yHtPZ2Ynm5uasZzAtLS3o7OwEAIRCIXz44YcZRZW0jSAI6e2kv5XbTZgwAR988AEikUh6O+U2giCgubk5nUFERERULFMXaX/+85+xadMmLF68OH3fGWecgZtuugnr16/H3XffjXA4jO9+97vplS8A6O/vR21t9jXg+vp69PX1ARh8YwEweElSzuVywev1prfr7++Hy+XKeL2b9DhRFDO2K7RPIiKiamXll3aYlalekyZ36NAhLF++HGeeeSYuueSS9P1Lly7N2O7ss8/GV77yFTz88MNYt25dpZtJREREsP5rcM3IlCtp/f39WLJkCRoaGvDggw+m3zCgxufzYfbs2fj73/+evq+urk71oy/6+vpQX18PAOlVL2lFTRKLxRAOh9Pb1dXVIRaLIRqNZrVREISM7Qrtk4iIiKhYpivSIpEILr/8cgwMDGD9+vWqlxALaWlpQVdXV1ZF39XVlX7dmM/nw+jRo7NeLyY9TtpO+rurqytju87OTpx44onweDzhFeCcAAAgAElEQVTp7ZRZoihm7JOIiIioWKYq0hKJBJYtW4bOzk6sX78eo0aNKviYUCiEV199Faeeemr6vra2NvT19WHnzp3p+7q6uvDmm2+ira0tY7utW7ciHo+n79u0aRPq6urQ2toKAJg2bRpqamrw/PPPp7eJx+PYvHlzVtZbb72FgwcPpu/buXMnent7MXv27NI6goiIiIY9+0rpg75M4LbbbsPGjRuxbNkyjBgxAocOHUr/aWpqwu7du3H77bcjGo2iv78fu3btwi233ILu7m7cfffd6aJu9OjR2LNnD5555hmMGjUK3d3duO222zBy5EisWLEiffm0paUFjz/+ON566y00NDTg5Zdfxpo1a3DNNdfgjDPOAAA4HA4IgoCOjg74/X6Ew2GsWrUKb7/9Nu655570pczm5ma89NJLeP755zF69Gjs3bsXt99+O77whS/gsssu09QvoigiHI4X3jAPQRDSH2ZrFCt+YKvE6LZbtW/YL7lZte0cU3VWbTcw+L3NiURKc46Wz9LU4zxVrbT0q6m+ceCcc87B+++/r/qzrVu3IplM4vbbb8e+ffvQ29sLr9eL1tZWXH311VkfFjswMIA777wTW7ZsQSKRwKxZs3DzzTdnrc7t2rULd911F/bu3YumpiZcdNFFWLJkSdbXbqxduxa/+MUv0NPTg8mTJ+OHP/xherVNcvjwYdxxxx3YsWMHHA4H5s6dixUrVmR8fEg59PjGAUEQcNxx2tqRTyU+Qd4olfhEcCv2DfslN6u2nWOqzqrtBgbbHgxGdSmQ+I0DxtDSr6Yq0kgdizRj8cSljv2Sm1XbzjFVZ9V2AyzSrEBLv5rqNWlERERENIhFGhEREZEJsUgbBmw2AbW1gy9cNHIp2qhsKdeIfOkyh9FtNzLbqmNqVL8b3S8c08rmyrOt3C9Gzl8+nwsul133fBp6LNKqnM/nQlOTHy7XsS+XEEVRtwlDypJez6F3djH3mTFfniMVI0a2Xe9s5Wt0OKYc03zZkkr1C+ev7H6vr/ehrs4Dm82ar60jdSzSqpTTaUdTkx8+nwuCIKQnIfm/tUwYyglCmW1kvtaJNFe22s/Nli8/qbBfMrOlxxuZbWQ+xzQ7O1e/6JEtqab5y+VypOd9qg4s0qrM4KVNDxoafLDZMicdOS2TkdokUalso/O1TKRqJxVltlo7is1Wy6lUfiX7pZR8Zbvz5Zfb9mKylW0pJVuZU6l8HuvVO39JV1CcTl4CtTrTfsE6lc7rdWZ8aF6ht5QrJ4tC2xczASnzpccUyldOVka1vdi32ZfadrVVhHzZpbSplH6vln7R+3hU9jnHNDN/OPVLMdnSNlaev2w2oKHBh2g0jkAgilTKuNfzkXG4klYFnE47Ght98PvdOZ/Z5lPoGXUxqxX5suU5+fLLbXsx2cq2lJKtzKlUfqHVikLZpYxpqdlqOZXKt3rbOaZD2y/Dbf6SLoF6vbwEakUs0ixMEI5d2rTbbSX/EqvlSeTPINV+Xk622mqG3tlG5ssnUi0nFWW2RO92G52fr1/0yJaoZRuZzzHlsa6WbfX5y+93obGRl0CthkWahdXWeuB2D16x1jrBSdRy9Mo2Ol/tEoKRbdc7W355Rc/8oegXPdsu7xe9s4u5z4z5PNZzZxdznxnzKzGmdruA+nqvrrlkLBZpFpbvjQFaSZOoEflSppFtN4rRbTcym/2SP9eoY92o3yMp3yhWH1POX+rZgjD4ejWyBg4VERERkQmxSCMiIiLNcr3phMrHIo2IiIg042vd9McijYiIiMiEWKQRERERmRCLNCIiIiITYpFGREREZEIs0oiIiIhMiEUaERERkQmxSCMiIiIyIRZpRERERCbEIo2IiIjIhFikWZpo2NdwGPml0PJ9WCnX6Gyj92HlthuZbeV+sfrX8HD+qlyuPNvih82wwiLNwgKBKJLJFERR32Lt2C+yaEi2PM+Idhe6T498o/o8120z53NMC2er3TZzvrwvKtEvnL8qd6wPDESQSrFKswrHUDeAypdIpHD0aAherxN+v1vzs0fpl1iZIZ/0ys2XP1b5d679lpovUWu/1my1tuvRL9LjJfIcPftFLcOq/WJUtl5tV55YOaaZ+RJlv3D+gmqOXmMajSYQDEZZoFkMV9KqQDgcxyefBBGNJgCU/uwr3wShvK+cZ3ZG5heTLZ1k9G67Hv0iTaDV3C/ltL2Yfik3W55jxJjmytaab6YxLSd7KI/1crONzq/EmCaTKfT2hriCZlEs0qqEKIoYGIigtzeUvgRa7OMkhZ6tlToZyScWI7ONzM91UlFmlzKRGtluo/PL6ZdSstXaVSjbyHyOaXb2cOsXo7ONzA8Gozh6NIR4PFnwMWROLNKqTDyexNGjIQSD0bwTaSkTs1wxqySFViuKyS/Udi3ZyjaqZSu3H+r8Yk6Oeo1prmy17Yc63+pt55iqZ1eiX5RtVLvPqvNXNJpAT08Q4XC86HwyJxZpVSocjqOnJ/sSqJaJWS7XKoke+blWSfRuu3Ii1avtannlnlSKya+GftGSnSu/1NWKUrLl+RxTa/aLMluv/KGcv1IpkZc2qwzfOFDFUqnBS6CRSBw1NR44HMcmBi2ThJw0WSjv0yu7lPvLyZdPoHrlStnKXPZL5ftF77bLCxA98zmm+bOLvb+c/GqZv4LBGMLhmC7ZZB5cSRsG4vEkentDAPQ9aUnkk4VR+UZm633SqlQ++yV3tvxvvbOt3HaOqXq21eevUIgFWrVikUZERGRhxb7RwmhmaUc1YZFGREREmhm1SjucsUgjIiIiMiEWaUREREQmxCKNiIiIyIRYpBERERGZEIs0IiIiIhNikUZERERkQizSiIiIiEyIRRoRERGRCbFIIyIiIjIhFmlEREREJsQibZhwueyG74Pf25bN6n1iZPut+hUyVh9TUmflcQ3HU0hZuP2Um2OoG0DGstkE1NR44HY7MiYhPU+Q8lxRFA3LFgRB13x5lrQfK/WLvD+M7HcrjqlVj/VKjGkljnU9860+phKjjvVwNIFDPSEkkyk0+l3wOm2WfQJE2VikVTGfzwWfz5W+rSxItE4YuSZjPSZpedvU8rVOQmoTvp79otZ2vU5euU5WevaLWruN6hc9sqUMiVHHujxbfr9e2Wr5VhxTURQtM6ZWnb9SKRHvfxzAx73h9P2fBGJwO2xo9DvhtPNCWTVgkVaFXC47amo8sNkE1clA60kg3wQk3adlIs33jFnryle+tutxcizUdj36Jd+YVqJfys1Xy5NuSyd1LdlWPtaHekyteKxrybb6/NXTH8H7HwWQSGZf4owmUjjUF0Wdx4FarwM2rqpZGou0KjJ4adMNt9tZ1ORSzmRU7CWHcibSUi5nlNr2fKsVatnyx5TS9mLaLX9Msdn5TirKfKPHtJRVklL7pdQxLaVfSmmPfNtC21fLmBbTllK2rYZ+MSJb+nk581cklsR7hwcQDMcLtqc/kkAwmhi8BFqB1ySTMVikVYlclzYLKXaVpNxnfsWskpQyMSuz1TLU8kvNlrYvNJFqbXuhtpUy8attZ9V+yZct/UztMcXkc0zV863eL8o2qmVbdf5KiSI++CiIj2SXNouRFIGPAzF4nDY0+pxw8BKo5bBIszin047a2tyXNouVa5Wk3AkoV7Yys9yTbb58I9quzJPvT2t+vn7Ra0yVt63eL1qzJbmyteZzTNXzje4XtWyrz19HB6L4x5EAEslUWfkAEImn8GFfFHVeB+o8Dk19TZXFIs3CfD4X/H53Wa+byEU5kcrv1yNbosfkqZZvdNv1zlXmsF+ys4u9v5x8+SqJ3tkSjml2tpRvxX6Rso1ue/TTS5uBIi5tFqs/nEAomsSoerchr1UbjFR/0kPlYZFmYS7X4PDp/axInmfEMy4j8yvZdiOy9VhVyJWt9m8j8o3Ilk6KRvaLETimubON7hej2m/0/PXR0RBC0QQ+6Yvomi1JpEQkUyJsdn3bLopAIBKHVJt53A7wlXDasUgjIqKqo+cVhkoKRhLo6TemQDNSShTx964exBMpOB02nDK+CTUeJ1fUNGKRRkRERJrFEynE4smhbkZVMdVbPZ5//nlcccUVaGtrw9SpU7FgwQI888wzWZX4r3/9a5x33nk49dRT8dWvfhWvvPJKVtbAwABWrFiB6dOno7W1FUuXLsWRI0eyttu1axcWLlyIKVOmYM6cOVi7dm3W/kRRxNq1a3H22WdjypQpWLhwIfbs2ZOVdfjwYVxzzTVobW3F9OnTcdNNNyEQCGjsFSIiIhqOTFWkPfHEE/B6vbjxxhvxyCOPoK2tDbfccgseeuih9DYbN27ELbfcgnnz5mHdunWYOnUqrr766qyiadmyZfj973+PlStX4t5770VXVxeWLFmCRCKR3ubdd99Fe3s7Ro4ciY6ODnznO9/B6tWr8dhjj2VkrVu3DqtXr8all16Kjo4OjBw5EosXL0Z3d3d6m3g8jssuuwwHDx7EqlWrsHLlSuzYsQPXXXedQb1FRERE1cxUlzsfeeQRNDU1pW/PmDEDvb29ePzxx3HllVfCZrNh9erVuOCCC7Bs2TIAwFlnnYW3334bDz30ENatWwcA2L17N3bs2IENGzZg1qxZAIDm5mbMnz8fmzdvxvz58wEAGzZsQGNjI+677z64XC7MmDEDPT09ePTRR7Fo0SK4XC5Eo1F0dHRg8eLFuPTSSwEAp59+Os4//3xs2LABK1euBAC8+OKLeOedd7Bp0ya0tLQAAOrq6tDe3o6//e1vmDJlSiW6kIiIiKqEqVbS5AWaZPLkyQgEAgiFQuju7sbBgwcxb968jG3mz5+PnTt3IhaLAQC2b9+Ouro6zJw5M71NS0sLJk+ejO3bt6fv2759O770pS/B5XJlZPX392P37t0ABi+HBgKBjH26XC7MnTs3K2vixInpAg0AZs6ciYaGBmzbtq3cLiEiIqJhylRFmpq//OUvGDVqFGpqatDZ2QlgcFVMbsKECYjH4+nLj52dnWhubs56Z09LS0s6IxQK4cMPP8woqqRtBEFIbyf9rdxuwoQJ+OCDDxCJRNLbKbcRBAHNzc3pDCIiIqJimbpI+/Of/4xNmzZh8eLFAIC+vj4Ag5cR5aTb0s/7+/tRW1ublVdfX5/eZmBgQDXL5XLB6/VmZLlcLrjd7qx9iqJY0j6JiIiIimXaIu3QoUNYvnw5zjzzTFxyySVD3RwiIiKiijJlkdbf348lS5agoaEBDz74IGy2wWbW19cDOLYKJt9e/vO6ujrVj77o6+tLbyOteimzYrEYwuFwRlYsFkM0Gs3apyAIJe2TiIiIqFimK9IikQguv/xyDAwMYP369RmXEKXXfClf49XZ2Qmn04lx48alt+vq6sr6vLOurq50hs/nw+jRo7OypMdJ20l/d3V1Ze3zxBNPhMfjSW+nzBJFMWOfRERERMUyVZGWSCSwbNkydHZ2Yv369Rg1alTGz8eNG4fx48fjhRdeyLh/06ZNmDFjRvpdmm1tbejr68POnTvT23R1deHNN99EW1tb+r62tjZs3boV8Xg8I6uurg6tra0AgGnTpqGmpgbPP/98ept4PI7NmzdnZb311ls4ePBg+r6dO3eit7cXs2fP1tArRERENBzZV0of9GUCt912GzZu3Ihly5ZhxIgROHToUPpPU1MT7HY7GhsbsWbNGqRSKQCDHzT7yiuv4M4778To0aMBAKNHj8aePXvwzDPPYNSoUeju7sZtt92GkSNHYsWKFenLpy0tLXj88cfx1ltvoaGhAS+//DLWrFmDa665BmeccQYAwOFwQBAEdHR0wO/3IxwOY9WqVXj77bdxzz33pC9lNjc346WXXsLzzz+P0aNHY+/evbj99tvxhS98AZdddpmmfhFFEeFwPOt+j8cJu93YOtuK330nsWrbK/Gl31Zk1XYDHNNcjP4SdytKplLwuBwIR+Iw6lsvazwO2G3Z/eP3u1W2Lk4qJeKd944imRJht9twQpMPLge/Yh3Q1q+CaKJvPz3nnHPw/vvvq/5s69atGDt2LIDBr4Vat24dPvjgAzQ3N+Paa6/FnDlzMrYfGBjAnXfeiS1btiCRSGDWrFm4+eabs1bndu3ahbvuugt79+5FU1MTLrroIixZsiTjF1z6Wqhf/OIX6OnpweTJk/HDH/4wvdomOXz4MO644w7s2LEDDocDc+fOxYoVK1BTU6OpX5LJFHp6gln3e73O9ODrOSFJX0wsHRp6T3byXL2/BFl5OLNfjmVbue1y7Jdj2ZVou4RjeixfyjXyWI8nU/jH4QB6A9E8jyid0y5gVJ1btd0jR2Z/QkGx4okkNu3oRCyehMtpx2n/dBy/YP1TWvrVVEUaqctVpAGAw2FDTY0HTqddlwlDbWLTa7IzOls5aardpyVf2U6j265HtlqW1fvFKm2X6D2mubKt0i9WH9NK90t/MIruwwFENX5xuQCgweeE323P2V4WacbQ0q+avhZKFEX86le/wjPPPIPu7u70uyzlBEHAm2++qWU3lEcikUJvbwgej7SqVt5El2+ykT8rLWcilT9G+Vg9TmBqJy3lv8s9ARRqu5Z+kR6n1l49+yVXn2vJL6ZfzDymudpllWO90Jha8VjXI9vKY6p8vPTvWp8LpzQ34dAnIRzqCaKcmsfnsqPB51S9xEnmpqlIu+eee/DEE09g8uTJ+OpXv8qPmhhCkUgc0WgCfr8LXq+r6Mko3wQkV+5EmmsCUssvdSItJVu+fanZ+R6jtV8KbV9uv5QyplJBpeeYKvu81DEtpl9K2V7ZBise66WOaaFtlfnKjFzZyvYUm22GY72UbGlbtQy1fKPnrxNG+DCi3oPuwwPoC8YK5gOAwyagye+E28nXhlmVpiLtv//7v/HlL38ZP/3pT/VqD2kgiiICgSgikThqaz3pNxXkmgCKnSTkil0lKeeZZbETabETs1p+MROplrYX0y+ltr2UE4yWMS2UXw1jWko+xzR3djGP1dovygy1/FyPy5dv5fnL6bBhwtgG9AWi6D4ygFg8pb4tgHqfEzV5Lm2SNWh6a2AkEsH/+3//T6+2kE4SiRSOHg0hEIhCFLNXheQrJ+X8AisfJ88vZ+LMlS+fTPXKz9VuPbKNzi/UL1rHVK2dyttm7Zd82VouReXLV44Dx1S//GLGdDjPX3V+F04ZPwInjPBBGeNz2TC6wYNaj6PiBZrTYYPLaYfTYapP97I0TT05Y8YM/N///Z9ebSGdRSJx9PQEEY0mAOgzAckpJzqj8/XOlk+keuar9YuWk0qhfLX7tWRXol8A7SfbXPlq7TZiTPXKVstXu19LNo/1wtlWm79sNgGjR/hxyvgRcDvtcNgEjKx1YUSNe0hee2YTBJwyvgmn/dNxOGV8EzxuR1aRSqXT9O7Ow4cP47LLLsMFF1yAhQsXorGxUc+20afyvbuzWC6XHfX1Pp1alE3rasVQKuU1KmbMN4pV210JVu0bHuvqrD5/9fSGkYwnNLdfy7sQU6nBKzhSRcEC7Zgh+wiO1tZWiKKY/l5Lt9ud/qDY9A4EAX/5y1/KbiDpU6QJgoDjjtP2eW35WHVyBnjiyoX9kptV284xVWfVdgODbQ8Go6ofeF4qrUVaT0+IxZmKIfsIjvPOO8+yBzYRERGRmWkq0u666y692kFEREREMnwLBhEREZEJaVpJA4BAIIAnnngCr776Kj744AMAwIknnoizzz4bl156qebvrSQiIiIajjStpB0+fBhf+9rXsGbNGoRCIUybNg3Tpk1DOBzGmjVr8PWvfx1HjhzRq61EREREw4amlbR7770XH3/8MTo6OjB79uyMn23btg3Lli3DqlWrcPfdd2tqJBEREdFwo2kl7X//93/xne98J6tAA4DZs2dj0aJF2LZtm5ZdEBEREQ1Lmoq0cDiMESNG5Pz5cccdh3A4rGUXRERERMOSpiJtwoQJ2LhxI2KxWNbP4vE4Nm7ciAkTJmjZBREREdGwpOk1aUuWLMHy5cvxr//6r/j2t7+N8ePHAwC6urrwy1/+Evv27cP999+vRzuJiIiIhhVNRdq8efMQDoexatUq3HbbbRlfcDxixAj827/9G84//3xdGkpEREQ0nGj67k5JIpHAG2+8kfE5aZ///OfhcGj+GDaCPt/dabMJGDGC392pht9nqI79kptV284xVWfVdgODbQ+H4wgGo5qz+N2dxhiyL1inytBapLndDtTUuGGz2QyZjOSZRuZbNVv5b73z2fbKZyv/rXe+0dkALNt2jql6djgcRygUhZYzOos0Y1TsC9b/9Kc/AQDOOOOMjNuFSNtTZdntNtTUuOFyOTImZj0nabVfSL0mo1zt1CNfmWG1flHL0bvfjczmmBbO1itfmS31C8e0uo51r9cJj8eBQCCKaDShKZ/Mo6SVtEmTJkEQBPz1r3+Fy+VK385FOpD27t2rS2OHq3JW0vx+F7xeFwD1yUzrs7tCE6WWibRQ27RO0vker0e/DGXbJXqPqR7ZVh7TfG3jsW7Ntudrm9XHNBZLIBCIIplMlZTNlTRjVGwl7ec//zkAwOVyZdwm83C5pEubQt5JQP6zUiY6+baF8qVf1lLz1dqozJZva0S2tH052YXytfRLMWNa6ipJMWOq7HOzjSmP9ezsYsdUuX2x+Wo5ynyjj/Vysq08psVmO512NDb6EA7HEAxmf0QWWQdfk2YBxayk2e0Camo86Uubek+48u1KfQZYzOO0ZBd6Rq3lWbfRbS8mu5y2F/s4jmn522jJ5piWt02+NhVq13DrF+mxqZSIQCCKWKzwJVCupBlDS79q+jDbSy65BDt37sz589dffx2XXHKJll1QEXw+Fxob/XA67QBKnygEIXPVTflLJl+ZKWeJXnqclKPMlm9XTrZaViXy9cjO1S9a85XtNmJM1dqpvG3FMdVyOarQsa7nmCoN1zHl/JU/32YTUF/vRX29F3Z7eZdYi8UCTX+airQ//vGP+Pjjj3P+vKenp+g3F1DpnE47mpr88PlcZU9AcvlO7Fqzjc5XTqR6Z0vkl0CMytd6UlFmyy+vGNVuI/PlfaJnv0jU2m1Uvp5jymO9cLbaz8yYX4kxHbwEOni+MIoe/UyZNBVpQP5Beffdd+H3+7XugnLw+wu/9qwcUp7yb7Nnq+Xp3XZ5u43ol1y3zZyv7BOj+ly+L73zjTzWc902c341HOucv7KzBUFInzfIGkr+tNnf/OY3+M1vfpO+/cgjj+Dpp5/O2m5gYAD79u1DW1ubthZSXkY9c5Ge1Rn5zMjotlsV+0WdlZ+lc0zVcf5SzzV6TC38qzTslFykhcNhHD16NH07GAzCZstekPP5fLjwwgtx1VVXaWshERER0TCk6d2d55xzDm666SZ86Utf0rNNpJDr3Z0NDb70mwWMYPQzUSNZte1Gt5v9UnkcU3Xsl9yMbntPTwDJZPapn+/uNEbFPidN6eWXX9bycCIiIiLKQdMbB1577TXcd999OX9+//335/2IDiIiIiJSp6lIe/jhh/Hhhx/m/Pnhw4fxyCOPaNkFERER0bCkqUh7++23cdppp+X8+amnnop9+/Zp2QURERHRsKSpSIvFYojH43l/HolEtOyCiIiIaFjSVKSdfPLJ2LJli+rPRFHE5s2bMWHCBC27ICIiIhqWNBVpF198MXbt2oWlS5di3759SCQSSCQSeOutt/CDH/wAe/bswaJFi/RqKxEREdGwoekjOBYsWIDu7m48/PDD2LJlS/pDbVOpFARBwBVXXIGvf/3rujSUiIiIaDjR9GG2kvfeew9btmxBd3c3AOCkk07Cueeei5NOOklzA4kfZlsOq7adH/CpzqrtBjimubBfcuOH2VaXIfswW8lJJ52E9vZ2PaKIiIiICBpfk0ZDK5VKGfasRXomZ0S+lGlk241iZNuN7HOj840eUyOzrT6m8r+tkq3chxG5Vj3Wje5vURSRShm2C9KZppW0SZMmFbUku3fvXi27oRwGBiLw+dzwep0AoMvyuNoyu55L72oTkF75UraUpbytNdvK/WLltgMc03zZUjFiRLbyfo6ptY/1RCKFQCDCS5IWoqlIu+qqq7IOoGQyiffffx8vvfQSmpubMWfOHE0NpNxEEQgGo4hE4qit9cDptGuaMJQTv/xvrROG2uPl/9babmV7pX/Ln/WatV+Umcp+0ZovkedLJ3U9sjmm6tlW7hcrt12ezzGVVs+AQCCMSCRRVgYNHU1F2jXXXJPzZ0eOHMHChQsxfvx4LbugIiSTKfT2huB2O1BT4wFQ2i90MRNYuRNGrglImV1sO9TylTlq2cq26JEt3V9uv+Rqp/K+clZJCvWlss+H25jyWM/OLqbt5RYNHNPc+coctWxlW0rJjkTiCAaj4OKZNRn2mrTjjz8eF154IR5++GGjdkEK0WgCPT0BRCLxjJWSXIopQuTUVniGKl9euBSbrVxBypetfJxe7ZZvU0rbi83nmObOVmtTvmy1xw5FfjnZxfZLqfnKnxsxpvLHFcrO1a582crHDkV+JY71RGLwyXsgULkCjZdR9WfoGwe8Xi/+8Y9/GLkLUhhc1o6itzeERCL16X3qr6OQlLqMXmjCKHUCUmartVHtvnKW/43ML6ZftGSr5VQqn2Oa/1gvN1utjWrZRuabbUyV7eH8VVq+KA6+Xll+DqiUcv5PlJ8uH8Gh5u2338aTTz6J8bzcOSSkZ1EejxN+vxvSJdByTyhqlJcQ5Lla89UuIWid4NQeK03GxVzWKCVfeWlF77ar9YtefS4xYkyVRY3RY6o1V54/FMe6nmNq1WNdLdvKY6o1P9+YDl7ajHFFq4poKtLOOecc1YNtYGAAAwMD8Hg8vNw5xCKROKLRBPx+F7xeFwB9n+2oZemdr9fkppYNaH92my9bytf7GWYl+qXQfVqy9TzZquXnuq1nthH5PNbV8614rEtZlRjTVEpEf3/lV87IeJqKtOnTp6sedPX19WSA83EAACAASURBVBg3bhwuuOACNDQ0aNkF6UAURQSDMXi9LkOXo43K1uvZbTH7MCLXqGe11dAvVm67Udnyv43chxG57JfcuUa2PRyOsUCrUpqKtLvuukuvdhARERGRDL9xgIiIiMiESlpJW7NmTck7EAQBV111VcmPIyIiIhrOBLGEFxFMmjQpO0DlBanS/dJrTvi1UNokkyn09AQ1ZQiCgOOOq9GpRdmMfn2RkYxuu1X7hv2Sm1XbzjFVZ9V2A9JrjqMIh+Oas0aOrC37salUCj09Ib6zVIWWfi1pJe2tt97KuH348GF873vfw8knn4zvfOc7aG5uBgB0dnbiZz/7GQ4cOICOjo6yG0dEREQ0XJW0kqZ05ZVXwuFwYPXq1ao/X7p0KZLJJB566KGyG0hcSTMaVxfUsV9ys2rbOabqrNpugCtpVqClXzW9ceD111/HWWedlfPnZ511Fnbu3FlS5rvvvotbb70VCxYswCmnnIKvfOUrWdssWrQIEydOzPpz4MCBjO0GBgawYsUKTJ8+Ha2trVi6dCmOHDmSlbdr1y4sXLgQU6ZMwZw5c7B27dqsA00URaxduxZnn302pkyZgoULF2LPnj1ZWYcPH8Y111yD1tZWTJ8+HTfddBMCgUBJfUBERESk6SM43G439uzZg29/+9uqP9+9ezfcbndJme+88w62bduG0047DalUKmdVPm3aNNxwww0Z940dOzbj9rJly7B//36sXLkSbrcbDzzwAJYsWYJnn30WDsfgf/3dd99Fe3s7Zs6ciWXLlmHfvn249957Ybfb0d7ens5at24dVq9ejeuvvx4TJ07EU089hcWLF+O5557DuHHjAADxeByXXXYZAGDVqlWIRCK4++67cd111/GyLxEREZVEU5H2z//8z3jyySdRV1eHiy++GCeddBIA4L333sOTTz6J3/3ud1i0aFFJmeeccw7OPfdcAMCNN96IN954Q3W7uro6TJ06NWfO7t27sWPHDmzYsAGzZs0CADQ3N2P+/PnYvHkz5s+fDwDYsGEDGhsbcd9998HlcmHGjBno6enBo48+ikWLFsHlciEajaKjowOLFy/GpZdeCgA4/fTTcf7552PDhg1YuXIlAODFF1/EO++8g02bNqGlpSXdzvb2dvztb3/DlClTSuoLIiIiGr40FWnXX389jh49iv/4j//AU089BZtt8OqptAJ2wQUX4Prrry8pU8rQavv27airq8PMmTPT97W0tGDy5MnYvn17ukjbvn075s6dC5fLld5u/vz56OjowO7du3HmmWdi165dCAQCmDdvXnobl8uFuXPnYsuWLRn7nDhxYrpAA4CZM2eioaEB27ZtY5FGRERERdNUpLlcLvz7v/872tvbsW3bNnzwwQcAgDFjxqCtrU31Izv08sc//hFTp05FMpnEaaedhh/84Ac444wz0j/v7OxEc3Nz1otBW1pa0NnZCQAIhUL48MMPM4oqaRtBENDZ2Ykzzzwzvb1yuwkTJuBnP/sZIpEIPB4POjs7s7YRBAHNzc3pDCIiIqJiaCrSJJMmTTK0IFM644wzsGDBAowfPx5HjhzBhg0b8N3vfhdPPvkkWltbAQD9/f2orc1+R0V9fX36EurAwACAwUuSci6XC16vF319feksl8uV9fq6uro6iKKIvr4+eDyevPuUsoiIiIiKoUuRtmfPHvzhD3/AJ598gm9/+9sYP348wuEwOjs7MX78ePj9fj12k7Z06dKM22effTa+8pWv4OGHH8a6det03Vc1EATA73el34Rh1FvNjXobeyXeHm9k240itdnI/uGYqucaxepjajSr9ovRx7rX60I8nuSXrFchTS8Ai8ViuPrqq/Gtb30L999/P5588kl8+OGHg8E2GxYvXoyf//znujQ0H5/Ph9mzZ+Pvf/97+r66ujrVj77o6+tDfX09AKRXvaQVNUksFkM4HE5vV1dXh1gshmg0mrFdf38/BEHI2K7QPivN7XagqakGHo8z57dDaKGWZVS+KIq6Z8snUKv2i9HZRuYbNaZq+9Iju5j79Mo3sl/0zJdnSwUmxzQ7y8j5y2YT0NDgQ02NGxb9uDfKQVOR9tOf/hSvvvoqVq5ciRdeeCHjAHS73Tj//POxdetWzY0sR0tLC7q6urJ+Kbq6utKvG/P5fBg9enTW68Wkx0nbSX93dXVlbNfZ2YkTTzwRHo8nvZ0ySxTFjH1Wit1uQ0ODF3V1XgjCsdUzQRB0m0jlj5dy1X5WbrY0Acnbrke+st3S35XqFyParke2Wj7HVD3fqv1iRNvl2dK/9cjnmObOlij7xeNxoqmpBm63LhfJyAQ0FWkbN27EhRdeiIULF6quFE2YMAHd3d1adlGUUCiEV199Faeeemr6vra2NvT19WV8mG5XVxfefPNNtLW1ZWy3detWxOPHPq1506ZNqKurS7++bdq0aaipqcHzzz+f3iYej2Pz5s1ZWW+99RYOHjyYvm/nzp3o7e3F7Nmzdf0/5zJ4adONxkYfHA77p/dlP7XSMmGoTUDK7HInUrUJSJmttq0Z8pUrCmrZ5a7aKftSma/1JMMxzZ1tln4xU79zTHNnq7VR7T6j+kUQgLo6LxoavLDb9fm0BBo6msrtTz75BBMnTsz5c7vdjkgkUlJmOBzGtm3bAADvv/8+AoEAXnjhBQDA9OnT0dnZifXr12Pu3LkYM2YMjhw5gscffxwfffQRfvrTn6ZzWltbMWvWLKxYsQI33HAD3G437r//fkycOBFf/vKX09u1t7fjf/7nf3DdddfhW9/6Ft5++21s2LABy5cvT38sh9vtxuWXX44HH3wQTU1N+OxnP4v//M//RG9vb8YH3p533nno6OjANddcg2uvvRbhcBj33HNP+lsKjOZ2Oz5d7laffJSUE0ahx8i3KTZfmlSKzVdrW65s+WOKzbZyv1i57cXkD8cxLSZfuVKqZ9uVP+eYZuZb+Vh3OOxobPQhHI4jFIpC4+JgUbSuQFI2TUWa2qVCuV27dqU/4LZYn3zyCX7wgx9k3Cfd/vnPf44TTjgB8Xgc999/P3p7e+H1etHa2oof/ehHWYXQAw88gDvvvBO33norEokEZs2ahZtvvjn9bQMA8JnPfAYbNmzAXXfdhe9973toamrC0qVLsXjx4oysJUuWQBRFPPbYY+jp6cHkyZOxYcOG9LcNAIDT6cT69etxxx134Nprr4XD4cDcuXOxYsWKkvqgVHa7DTU1brhcjqImE6ViJoxSJiC1bCkjX3ap7ZYek28iLXViVmYXap9e/aL2eK1tL3SC4ZgO3bFeara0faF+ydWeYrLlORzT7G2t2i9erxMejwOBQBTRaKLkNpa6TxZq+tL0BeurV6/G448/jsceewzjx4/HjBkz8MQTT+Css87C008/jZUrV+K6667LWG2i0uX7gnW/3wWvd3DFr5xJQkmaFOR/65Ut5Ut5yn3pma12W2u2Wput2nY9syXsl+x8Kc/q/WLltuuVLeVLeVbsl1gsgUAgimRS/V2g/IJ1Y2jpV01FWiwWwxVXXIHXX38dLS0t2L9/Pz772c+ir68Phw4dwuzZs/Hwww/DbreX3UDKXaTV1Xngcjl0m4Dk9J6AKpUt5Uus1PZK9IuV2w7oP55StpX7xYptN/J3VMq3Yr9I+RKj+v2TTwKqlz9ZpBljyIo0YHDQf/vb3+LFF1/Eu+++i1QqhZNOOgnz5s3DggULDDmIh5tcRVpDgw9Op3EFsFGTUCVYte1Gt5v9UnkcU3VWbXclGN03PT0BJJPZp34WacYYkiItHo/jwIEDaGhowAknnFB2A6gwFmmls2rbeUJXZ9V2AxzTXNgvubFIqy5a+rXs9+fabDZ84xvfwObNm8veORERERGpK7tIs9vtOPHEExGLxfRsDxERERFB44fZXnzxxXj66afR29urV3uIiIiICBo/Jy2VSsHlcmHu3Lk477zzMGbMmPRXJEkEQcCll16qZTdEREREw46md3dOmjSp8A4EAXv37i13FwS+caAcVm07X0ytzqrtBjimubBfcuMbB6qLln7VtJI2VF+eTkRERFTtNBVpY8aMKWn7UCiExx57DF/72tcwduxYLbsmIiIiqmqa3jhQqlAohIceegjd3d2V3C0RERGR5VS0SAOyvwSYiIiIiLJVvEgjIiIiosJYpBERERGZEIs0izPy8rGV375uZUa1n/0ydDim6jh/ZavEmFr8sBlWWKRZWDAYhSiKuv9SS5lSrp758kyj2q72b72yje6XXLfNnM8xzZ2d77aZ8+X9oveYKvOsOKaVOtaN6PdQKIpUilWaVWj6CA4aWvF4Ep98EoTf74bX6wSg7dmj/AMUlTl6fLiifMKRsuSTnta2y3ML3V9qdr5+0SNfIu+XSrSdY1o9/aJXtlq/cEyH7ljXa0zj8SQCgSiSyVTZWVR5XEmrAsFgFEePhhCPJwGU98xRbQKS3xYEoexndvKJRi1brQ2lZKtlVSJf/v/R0i+FssvJV44Vx7S4fPaLer7V2z6cx1QURfT3h9HXFza8QNN7ZZE0Fml79uwpuM0vfvGL9L+bmpqwdetWnH766Vp2SyqSyRT6+sLo7w+XNBnlm4CUSp0wCk1AyuxSJ9Ji88uZ6CrZL0a0vZjscvI5prmz1R6bK7sS/aJ8nNZs+c85ptnZZjzWw+E4enqCiEYTRT1OK6u+DtDMNBVpS5Yswd///vecP+/o6MCPf/zjYzuz2TBmzBi4XC4tu6U8otEEenqCCIfjeSeMUiYguWInDCPzS5mYldmFJlK92j0U/c4xrd5+MTq7lPxiV3k5pkPXL4lECkePhj593XLRuyAT0lSkTZs2DYsXL8a+ffuyfrZq1Srcf//9aG9v17ILKoMoHrsEmkhkXwItdwKSyzVhlDsBKbPV2qpHu43Oz3UJVK9sOaPyOabZ2UN9rBuVzzGtrmNdFIH+/jB6e0N87VmV0FSkPfjgg/jc5z6H7373uzhw4ED6/h/96EdYt24dli9fjuuvv15zI6k8yWQKvb3SJdDB+7ROQEpqOXpmSxOp3vm5Ch4j+0WvfLW26zWmuXKsOqY81o09FuU5HNPsnEoe65FIHD09gYpd2qTKEMRiL3LnEI1Gcdlll6GrqwtPPPEEOjo68Lvf/Q4333wzLrroIr3aOawlkyn09AQ1ZdhsAkaMqNGpRdmkydOKjG67VfuG/ZKbVdvOMVVn1XYDSL/2LBiMas4aObK27MemUin09ISKft3ccKKlXzUXacDgF6cvXrwYb7zxBgDgJz/5CRYsWKA1lj6lR5EmCAKOO45FmhqeuNSxX3Kzats5puqs2m5gsO3BYBThcFxzFos0Y2jp15I+J23z5s05f/bNb34Tb7/9Ns4991x4vd6Mbb/85S+X3UAiIiKi4ej/t3fn8VGV9/7AP2f2JJPJgpFFtgQEQVlVkAvEhVoNWPHe6o/buoNU7y1YsF61qIhLf6A/XCpaDRFbrda6ofVeUFDkEkGktUDdEAQCsgYwIbPv5/fHeMbZMzPnnGRO8nm/XrwgM2c+8/A8J8/5znNm5uS0knbGGWekPMcOIOPtO3bskNfKbo4raeri6kJq7Jf0tNp2jmlqWm03wJU0LeiwlbQXX3wx7yciIiIiouzlVKSNGzdOrXYQERERUQzFr90piiI++eQT+P1+nH322bBa1TvFRkRERNRVySrSHn/8cWzduhV/+tOfAEQKtJkzZ+KTTz6BKIro06cP/vjHP6J///6KNJaIiIiou5D1ZbZr1qzByJEjoz+/99572Lx5M+bNm4f6+nqEQiEsW7ZMdiOJiIiIuhtZK2nNzc0YMGBA9Of3338fgwcPxs033wwA+NnPfoZXXnlFXguJiIiIuiFZK2kGgwF+vx9A5FTn5s2bMXny5Oj9PXr0QGtrq7wWEhEREXVDsoq0008/He+88w7a2trw5ptv4uTJkzj//POj9x8+fBgVFRWyG0lERETU3cg63fnLX/4St9xyC8477zwAwNixY6P/BoANGzZgxIgR8lpIRERE1A3JKtImTpyIt956C5s2bYLNZsPUqVOj97W1teGcc87BlClTZDeS5DMYZC2aEilOq9/wTlRoDAY9APlXHKDCo8gF1kldci4LJQhASYkZFovx+58FxS+BkrgLKZ0de8kxpQ/ssbla7Rctt13pbClfytVqv2ix7R2RrcV+SbxkohptFwQBwWAIDocXwWA47zxeFkodHXZZKNIWi8WIkhIzBCF5YlBioovNkP6WfkGVypck5iuVnapf5Oan6xel256YxTFNP6Za7BelsxNzlchP1S/pnjPf/FQ5Wh1TaR5Qo1/0eh0qKkrg8fjhcvk7pVhigaa8nIq0M844AzqdDtu3b4fJZIpecD0TQRDw1VdfyWok5cZg0MFqtcBo1KecEJQ4OKY7qChxgMnUrthXpfnkpzuoxP4sZyJtr1/ktj1Vdqp8OdmJj+8qY5ru+bPJT8xL/Lfcfu+sfsk3W3pcqjzp564wplrc1y0WI8xmI1wuH7zejj0FmrhqSPLlVKT98pe/hCAIMBgiD5szZ44qjaL8JJ7ajNyWfhLIZ8LIdmLMZyLNNAGlyk58TDb5qTJS5avdL7lmZ9Mv0v0c09T5HdEvSo9pvitIufYLxzQ5O5ftE9vQ2f0CiCgttcBiMcLplHcKlDpX3u9J83g8uPrqq3HVVVfhZz/7mdLtohjZvCfNbDbAarVAEOS9skz32Nj3VuT76i/TY5V4VaxmdrrHa71ftNx2NbO13i/55LfXdjnZsY/nmOb2WCWyvd4AXC4f2jva8z1p6uiU96QVFRXh4MGDee04pBy9XofSUjOMRkPey/NA5leOcifnTK8c5UxAsfmpXlHnsgKVKVvKStf2fPMzrZIo3fbEHI4p+yVVdmxbtdh2jmlyNvDDKVCn0wufL5h3W6njyfpehsmTJ2Pjxo1KtYVyZLEYUVFR/P3Hr+VNFJLECUiaKJTKTjy9kviccrIlHZmvRna6+5TK55imz2e/JL8wUSO7I/M5plLbAZutCGVlRbLzqOPI+gqOPXv24Fe/+hWGDRuGGTNmoF+/fjCbzUnblZeXy2pkd5fudGd5eTGMRr1qzytnZa6zabXtareb/dLxOKapabXdHUHtvmlpcSIUSj7083SnOuT0q6wi7YwzzvghKMMOtWPHjnyfgsAiLR9abTsP6Klptd0AxzQd9kt6LNK6lk77njTp055EREREpCxZRdrcuXOVagcRERERxeAFHYmIiIgKEIs0IiIiogLEIo2IiIioALFIIyIiIipALNKIiIiIChCLNCIiIqICxCKNiIiIqACxSCMiIiIqQAVXpO3fvx8LFy7E9OnTMXz4cFx22WUpt3v99ddxySWXYMSIEbj88suxfv36pG0cDgcWLFiAcePGYcyYMbj11ltx7NixpO22bt2KGTNmYOTIkbjwwguxfPnypEtbiKKI5cuX44ILLsDIkSMxY8YMbN++PSmrubkZc+fOxZgxYzBu3DjcfffdcDqdefYGERERdVcFV6R988032LBhAwYMGIBBgwal3GbVqlW49957UVdXh4aGBowePRpz5sxJKprmzZuHTZs2YdGiRVi6dCmampowe/ZsBIPB6Db79+/HrFmzUFVVhfr6elx//fV48skn8fzzz8dlNTQ04Mknn8QNN9yA+vp6VFVVYebMmThw4EB0m0AggJtuugn79u3Do48+ikWLFmHjxo349a9/rWAPERFRe3jJQuoKZF0WSg0XXXQRfvSjHwEA7rrrLnzxxRdJ2zz55JOYNm0a5s2bBwA477zzsGvXLjz99NNoaGgAAGzbtg0bN27EihUrMGnSJABAdXU1pk6dirVr12Lq1KkAgBUrVqCiogKPPfYYTCYTJkyYgJaWFjz77LO49tprYTKZ4PP5UF9fj5kzZ+KGG24AAJx99tm49NJLsWLFCixatAgAsGbNGnzzzTdYvXo1ampqAAA2mw2zZs3CZ599hpEjRyraV4FACEajXvGL8UqriIIgqHKhXylTzWwttz3x30pms1/S52ut7RzT9NlAx8xf0vMona1m28NhMeXF1ZXKJ2UV3EqaTpe5SQcOHMC+fftQV1cXd/vUqVOxefNm+P1+AEBjYyNsNhsmTpwY3aampgbDhg1DY2Nj9LbGxkZMmTIFJpMpLstut2Pbtm0AIqdDnU5n3HOaTCZcfPHFSVlDhw6NFmgAMHHiRJSXl2PDhg25dENWXC4f2trcCIdFxX450k08SuQnZkgTkdJtz/b2XLMTJ02l2q5mu9XO74wxVTI71YGQYxrfL0qOaUf1S0fNX0plZ8pRckzdbj9aWlyy89Lh6qXyCq5Ia8/evXsBRFbFYg0aNAiBQCB6+nHv3r2orq5O2mlqamqiGW63G0eOHIkrqqRtBEGIbif9nbjdoEGDcPjwYXi93uh2idsIgoDq6upohtL8/hBaWlxwu/2yJtLYx8X2WWJRki8182MPKmpkp8pLfC618uWOaaqDlpJ9nipT7TFVol9StVWpAryr7etq53fkmOZL62MaCITQ2ho5TpC2aK5Ia2trAxA5jRhL+lm63263o7S0NOnxZWVl0W0cDkfKLJPJhKKiorgsk8kEs9mc9JyiKOb0nGpxu/1obXUhEAgByP6XOtPBNla+E2m6CSgxO3b7XLJTZXRkvpzs9vol3/zEdqsxptlkp2pPttmJGR2ZH/v/UnNfzyU/l36RM6aZ8rvCmHa3+StyfPKgrc2j2ilOUlfBvSeN8hcKRX4hTSYDrFYzdLrMv/zpTg1kEvtejFSnimKzY0+XZJudbbuyneBSbdNefqH2S3vZ0v2pHtdeflcYUy3u6+1lS/enelx7+dm2PZ/s2Mdmk51tflcY00KZvzyeAFwuX7vZVNg0t5JWVlYG4IdVMIndbo+732azpfzqi7a2tug20qpXYpbf74fH44nL8vv98Pnid3i73Q5BEHJ6zo7g9wfR0uKCx5P6FGg+E3Os9l7ZqZmf7QpUpux0qyRKtlut/HSrAR3R52rnyx1T7uu5Zcdup1Y+x7Tj56/IqU03C7QuQnNFmvSer8T3eO3duxdGoxH9+vWLbtfU1JS0Izc1NUUziouL0bt376Qs6XHSdtLfTU1NSc/Zp08fWCyW6HaJWaIoxj1nR3K5/GhtdcedApU7AcVKnEjlTkCJ2RKl2612fqrsfF71Z5uf7r58sxPHNPZ2udkSLY6p1vf1xDFVIp9jmj5b0lH9Iooi7Hbp1GZY9nNQYdBckdavXz8MHDgQ7733Xtztq1evxoQJE6Kf0qytrUVbWxs2b94c3aapqQlfffUVamtro7fV1tZi3bp1CAQCcVk2mw1jxowBAIwdOxZWqxXvvvtudJtAIIC1a9cmZX399dfYt29f9LbNmzfj5MmTOP/885XpgByFQmG0tXngcHiik48Sk0Ss2Dw1smPbrGR+YrvV7hc12q5GvyTmaXFMua+nzo79WUlq5nNM02dLAoHIB8h8vmCGR5AW6RdJX/JVIDweD9atW4fdu3dj06ZNOHHiBHr16oXdu3ejsrISRUVFqKiowFNPPYVwOPJqoaGhAevXr8fixYvRu3dvAEDv3r2xfft2vPHGG+jZsycOHDiA++67D1VVVViwYEH0qz5qamrwhz/8AV9//TXKy8vx4Ycf4qmnnsLcuXNx7rnnAgAMBgMEQUB9fT1KSkrg8Xjw6KOPYteuXXjkkUeipzKrq6vxwQcf4N1330Xv3r2xY8cOPPDAAzjnnHNw00035d0noijC4wm0v2EGoZCI4mJT+xvKoPQE15HUartaRVRHUbPd7b3nqFBxTDs3Xy1abTcAeL0BBALyV89KSsztb5SGEseprkpOvwpiqpPynejgwYOYMmVKyvtefPFFjB8/HkDkslANDQ04fPgwqqurcdttt+HCCy+M297hcGDx4sV4//33EQwGMWnSJNxzzz3o2bNn3HZbt27FkiVLsGPHDlRWVuLqq6/G7Nmzk5aUly9fjj//+c9oaWnBsGHD8Jvf/Ca62iZpbm7GQw89hI0bN8JgMODiiy/GggULYLVa8+6TUCgs+7ttBEHAKafk34b2aPWAC6jfdq32DfslPa22nWOamlbbDUTa7nL5FCmQqqqSv50gW+FwGC0t7pTv8+vu5PRrwRVplIxFmrp44EqN/ZKeVtvOMU1Nq+0GWKRpgZx+1dx70oiIiIi6AxZpRERERAWIRRoRERFRAWKRRkRERFSAWKQRERERFSAWaUREREQFiEUaERERUQFikUZERERUgAyd3QAiIiLSvsj3AUe+FJhfaqsMFmlEREQaVghXSxBFwOkNQKrNLGYD9J3bpC6BRVo3YDDoUVoaucCrGpc/kV4xqXVpFSlXrbarla12vlaz1c5n2zs+W+18tbNj/9Za2wVBQHGxqdMvcB4WRXzZ1IJAMAyjQYfhAythtRi5oiYT35PWhQmCgNJSCyoqiqHXxw+1Ur84sRObNBEpnZ14m1r5SmeLooijLW7sO9KGYEjdfsl0u5z8jhpTpaiZL/VD7IFWS2MaDIXRdLgNzd9fX5H9kjx/qZGd7e1y8gVBQEmJGRUVxTAaO2/9KhAMwx8IIRAMd1obuhqupHVRFosRJSVmSPOmNAElTqT5vrKLfWxshnRQVyI/NjP271QHhXyyE9sde1+++dLjHO4ADjQ74AuEAAAnnX707lGCUyuKkp47n7bHZig5ponZ0r+V6JdYqcY08XnzyU81pnLzO3NfVyr7WKsbR064ERZFtDp8aLF70a9nKUq/X4FRul9in7tQ+0XrY5r4eEEQoNfrUF5eDK83AKfTx1WsLoBFWhdjMOhQWmqBwaDPOBHImUjTHcxT3ZbrZJRNe/KdSNNNzInZqbbPNj8YCuNAsxMnnb64+8JhEYeOO9Fi96DfqTZYi405tz1Tu2Pvy3VMO6Jf2mtPR4xpPsV9Lvt6Ynuyzc6mX/IdStaM2gAAIABJREFUU5cngG+bHfD6Q3H3e/0hfHPgJCpKzeh7aikMemXngNi2x7Ynl7a3lx3bDs5fiLvdbDbAbDbA6fTB6+28U6AkH4u0LiKy3G1CUZEpp4krlwkj1wkxl4k0mwkoVXYu+akemyk/135pbnHj6HeR1Yp0PL4Qdh1oRaXNgr6nWqHXKdsv+bY92/yOHNP2HtMRY5rrvp5tdj79kkvbgyERB4/Z0erwpd0OAFodPrS5sl/lzXd/ybbd6R6bKZ/zV+p8URRhtZpRVGSEw+FFkKcgNYlFWheQ7tRmttqbSPMpFBLzM02kuU5AidlSRqbsfNudmJWqr5yeyKnNxNWKTFrsXrQ5feh9SgmqylMfHJXol1TtTrytkMc01eOVGlOt9kt72cdaPTjynQvhcHanuqRV3u/aPOjfsxTWFKdAleiX2DZyTOO3V3P+0ut1qKgogcfjh8vl5ylQjWGRpmF6feTUptGY+dRmtlJNpHImoFTZUn5sttx2SxmxE2lsrlL9ImVLz5XtakU6obCIg8ec+K7Ni/49S1FSlPxJKKXHNDGzu49pR+zr6e6Tkx97ClS6zeUN4kCzAx5fMK9crz+EXQdOJq3yKtUvsW0HtD2mWtzXLRYjzGYjXC6eAtUSFmkaVlpqhsEQ+dSmEhOFROkJKDE7089KZquRHwiGoNfpcPxkbqsVmXh8Qez8thU9yizo37M0+lxKUvpgm5id6Wcls9XIV3tfVyNfyvIHQhAEAYeOO9Bi9yqSLa3y9j3Vih5l8j7okkpXGNN0PyuZrU6+iNJSC/z+oCJzF6mPRZqmCYpPQtFkQb3vU4p9DrVy1VrSj7zh+jtVsr9r86J3jxKYVPoIvZr9EvscWstWs81qP8exVjeOtXoUzw2FRTS3uNGjrEizY8r5K3V25G9V4kkF/J40IiIiogLEIo2IiIioALFIIyIiIipALNKIiIiIChCLNCIiIqICxCKNiIiIqACxSCMiIiIqQCzSiIiIiAoQizQiIiKiAsQrDhAREZFsJoMeAgQYDVz/UQqLNCIiIpJFEAQM6lcW/dlsNqh+GbrugEUaUY70egGhECcfKgw6ncCLZVOnE0UR+4/YEQyFYdDrMKRfOYxmIws1mbgmqWGiKKr2CyBdnFiNfClTzbarpdhswKjBVajuY1N0SV8QgN49SmA06DTZL2qPqZrZWm577x4lGDnoFPTqUazoRbNNBh36nmoFoM1+4fyVPjvyR518tzcIpzsAtzeo2nN0N1xJ0zCHwwur1Qzz969WBAVm6VQ5SmVLWdk8Z77ZsTnScynZdp0uklVuNaOsxIwj37lwrMUNOfORrcSE/j1LYTTo4g4savRLbL5aY6r0/tKR+6Ma2WqOqU4nQBAE9O5Rgh62IhxodsDu9uedKwhAz4pi9OpRElf0aa1f2rtNTn42z5lvttq/p+GwCIfDy5VXDWGRpmHhsAi73QujMYDSUgt0Onm/0LETUKrJQs5klDgBxf4tN1t6vCRVoSa37Ym5giBAEIA+p5SgR5kF3zY74HQHcso1GXXod2opyqzmlP0jt92xbY/NVXJMU2XH3qdEdqocpfITxzR2dVpL+7ogCDAZdRjcrxytDi8OHnMiEAznlFtaHHmxYDLqkvol9nm11i9anb+U/j11u/1wyyjgqXOwSOsCAoEQWlpcKC42objYBCC3iTRdgSCRMxm1d7CVbst3MmrvwCG37Zn6RbrdbNRjSL8KtNi9OHTMiUAo88FREICelcXoVfnDakWmfs/n4FgI/aL2mEoFlRr7uty2Z5uvRr/kuspr/P7UZkWpJeP/V4kxTdd+uf2i1vwV26ZM+YU8f/n9ITidXD3TKhZpXYjb7YfXG4DVaol+sibTL3Xi/e1NALlOpLlMuKlWv7Jte7b5uayStDcxJ2YDQEWpGeVWMw6fcOJYqyfltulWK7Jpu9QupftFelw2j8mnXxLblSk7nzHNJT9V29Jlp2pXe9mFMqZCzCrvgWYHHClWeQUAp1YWo3ePzC8WErNTtStT21M9NlN+Lv2Srm3psmMf19Xnr3BYhNPpgd8fajefCheLtC4mcgrUA5NJD6s1/SnQXCfPWO1NpLlOQInZUka6STrftmezSiLnlI50cDytyooeZZH3Bzk9kYNjtqsV7bU9Xbtj255P+ztqTFM9PteDbbpt2+uXfMdU7X5Jly3dnmr7bPPNRj1O71eBVrsXB4//cArUWmRE/16lMBv1efdLbPs6q18KdUw7e/7iqc2ug0VaF+X3pz4FKmcCipVuIpVzUEnMT5yM5L4nJlW7YrOV6Bfp8RaTHkP6V+C7Ng/8gTB6Vv7w6Tsl+j22L5Tsc0mqflEiX+0xTewXNfb12PxU2+STn7hKonS/lJeaUWY142iLCxaTAZW2/F4spGs7kDymsc8vp+0dMaZdZf4KBCKnNvkVQV0Hi7QuTjoFWlpqgcn0w3DLnSgSc5SagFJlt3ebnHw5qzjtZQNApc2iaG5svlIHlFTZgHIHrFTZ7d0mJ1/tMc20SqJEduJtSuULQuQrO5TO7ypjqmRuuiy1+kUUIx8i8/uDiuVTYeD3pHUD0qdAAeWLhVhqZSu1wpUuW+kDbmK+WtTsl8TnUCNXrX5Xu184pulztTqmamZ3xPzldvtZoHVRLNKIiIiIChCLNCIiIqICxCKNiIiIqACxSCMiIiIqQCzSiIiIiAoQizQiIiKiAsQijYiIiKgAsUgjIiIiKkC84gARERHJZjTo4v4m+VikERERkSw6QcDwgZXRny1mQ9LlvCh3LNKIiIhIFkEASouMkOoyFmjKYJFGREREsokiizOl8cRxN2GxGFV/DrV+OTvil17LbVeTmv2i5sWypefQUm5H0XK/qPkcWu4Xi8UInU7d3yfqHCzSujijUY+KihKUlJgARCYMJSeNVFlK5ofCYfgCIezc3wJRFBEKhxXLTmyn0pOpmvmx46j2mKrVL4l/F3p2qjyOqfr5iX2hpfkrsd1qZev1OlRWlqCoyKRYPhUGTRZpK1euxNChQ5P+LF26NG67119/HZdccglGjBiByy+/HOvXr0/KcjgcWLBgAcaNG4cxY8bg1ltvxbFjx5K227p1K2bMmIGRI0fiwgsvxPLly1NOTMuXL8cFF1yAkSNHYsaMGdi+fbuy//ks6XQCSkstKC8vhl4vRFctYlcv5E4YsY8XBEHR7HA48vi/f9mMe+s34/G/bMfiFz7FwWNORfJTtV0QBEUmUikjNjfV8+abLemoMVW6X2KzU90nNztdvhwc0/TZXalf1MqO/VuNfOlPSYkJlZUlMBr1svKpcGj6PWnPPfccSktLoz/37Nkz+u9Vq1bh3nvvxS233ILzzjsPq1evxpw5c/Dyyy9j9OjR0e3mzZuH3bt3Y9GiRTCbzXjiiScwe/ZsvPnmmzAYIt2zf/9+zJo1CxMnTsS8efOwc+dOLF26FHq9HrNmzYpmNTQ04Mknn8Ttt9+OoUOH4uWXX8bMmTPx17/+Ff369euAHokoKjKipMQc/TnxtFLiZJHraafYx6R6rHQAyCdfelxzqxsvv/c1dh9si973bbMDS174FBNH9cFPLxgMs0mf8xJ/bJGQity2t9cv2bQhU35iVqqf8x3TTG3qqH5Ruu2Jt3FM4/O7676u1vwlPSZVWxN/VmtMdTqgvLwYXm8ALpcv+oKXtEnTRdqZZ56JysrKlPc9+eSTmDZtGubNmwcAOO+887Br1y48/fTTaGhoAABs27YNGzduxIoVKzBp0iQAQHV1NaZOnYq1a9di6tSpAIAVK1agoqICjz32GEwmEyZMmICWlhY8++yzuPbaa2EymeDz+VBfX4+ZM2fihhtuAACcffbZuPTSS7FixQosWrRI3c5A5NSm1WqGXh9ZIG1vAsh1Ik2cVDJtn+pVY3v5oXAYwZCIdxr3Yv3WgyknFxHAxn8exradx3DF+YMwaVQfhEVA306x1t7EnKnt2UykmSbmVPm5HARyOdDJGVMt9ouW255Nbuw23WVMc8mOfUwu2e1tn8/8leuYJq4st5ed65iazQaYzQa4XD54PIF220SFSZOnO9tz4MAB7Nu3D3V1dXG3T506FZs3b4bf7wcANDY2wmazYeLEidFtampqMGzYMDQ2NkZva2xsxJQpU2AymeKy7HY7tm3bBiByOtTpdMY9p8lkwsUXXxyXpQZBiD21qUtaus/m8ZJ0y/C5TJ6J2YmTaSKpGNv69XEsXL4Z6z490O6rP5c3iJfX7MTDf/oHDp/IfApUbtsznRZKPN2TS3aq9iVmp9q+s/Oz7Zd8s1NlJGZ3RD7HNDm7o/pFrfx8stubv5SYG9XMLykxo6KimKdANUrTRdpll12GYcOGYcqUKaivr0coFAIA7N27F0BkVSzWoEGDEAgEcODAgeh21dXVSTt+TU1NNMPtduPIkSOoqalJ2kYQhOh20t+J2w0aNAiHDx+G1+tV4r+cxGIxorKyBGZzZFE014lfkm6ykHNQyTb/xEkPHn9lG1b895doc/pzyt13xI7/+8e/45W1O+HzhxAKx2fnc1DJpu1K9kuqg6MS+Zn6PN/TUO3l57Ja0V52pn6RM6aJ7VZjTBOzlcpvb0y5r3f8/CU3vyPGVK/Xoby8GKWlFllZ1PE0ebqzqqoKc+fOxahRoyAIAj788EM88cQTaG5uxsKFC9HWFnkfk81mi3uc9LN0v91uj3tPm6SsrAxffPEFgMgHC1JlmUwmFBUVxWWZTCaYzea47Ww2G0RRRFtbGywWi9z/ehyr1QKLRV5xlij2ABObqUR+YkYgGMJ/f9SEdZ8eiCuuciWKwIZth7B15zH86wWD8S8jeqd9znyly1EyX877YNrLTszVYr+okQ0oV1hmyuaYxud0xJiqPX+pMaZq94vZbIDJZEBLixNpFu6owGiySJs8eTImT54c/XnSpEkwm8144YUXcMstt3RiyzqWwaBT7VWRNGGokR8Oi2h45wvsP2JHq8OnWK7DHcCLq3egtNiIM6t7qPK9QUofEBOz1epztfM7ql+03HY1cEzT58f+rbVsNcdUECKf/g+FWKVpgaZPd8aqq6tDKBTCjh07UFZWBuCHVTCJ3W4HgOj9NpsNTqczKautrS26jbTSlpjl9/vh8Xjisvx+P3y++KLDbrdDEITodhSxfddxRQu0WC6+SZao20v3Hi8iLekyRVos6X1h0vvEJHv37oXRaIx+HUZNTQ2ampqSfpmbmpqiGcXFxejdu3dSlvQ4aTvp76ampqTn7NOnj+KnOomIiKhr6zJF2urVq6HX6zF8+HD069cPAwcOxHvvvZe0zYQJE6Kf0qytrUVbWxs2b94c3aapqQlfffUVamtro7fV1tZi3bp1CAQCcVk2mw1jxowBAIwdOxZWqxXvvvtudJtAIIC1a9fGZRERERFlQ5PvSZs1axbGjx+PoUOHAgDWrVuH1157Dddddx2qqqoAAHPnzsXtt9+O/v37Y/z48Vi9ejU+++wzvPTSS9GcMWPGYNKkSViwYAHuvPNOmM1mPP744xg6dCh+/OMfxz3ff//3f+PXv/41fvazn2HXrl1YsWIF5s+fHy34zGYzbr75ZixbtgyVlZUYMmQIXnnlFZw8eTLuC2+JiIiIsqHJIq26uhpvvvkmjh49inA4jIEDB2LBggW49tpro9tcdtll8Hg8aGhowPLly1FdXY2nnnoquvIleeKJJ7B48WIsXLgQwWAQkyZNwj333BO92gAADBgwACtWrMCSJUvwi1/8ApWVlbj11lsxc+bMuKzZs2dDFEU8//zzaGlpwbBhw7BixYoOvdoAERERdQ2CyHdXFrxQKIyWFlfS7eXl6n5BoVqfMAqFwvjl0v9VPFdyw7RhGDe8lyqf7lSbmp8E7Ih8tWi13QDHNB32S3pqt72lxZny051VVclfSZWtcDiMlhY3P7CRgpx+7TLvSSMiIiLqSjR5upOIiIgKS2TxL78VQK7ApcYijYiIiGQRRcDpDeR9JQOL2QBeXTQZizQiIiKSJSyK+LKpBYFgOOfHGg06DB9YCavFyBW1BCzSiIiISLZAMAx/INTZzehS+MEBIiIiogLEIo2SBENhrN2yH8+s/Bx7D7Upnu/0BHDJ+P4YMagHlP6UeYnFgAG9bIrnUufjaZCuR80x1fLXbxBJeLpTwzwePwyGyDVBlZqQdu5vxctrvsaxVg8EAfhs9wlMHNkb/3r+IFiLTbKyA8EwDh5zoNXhQ/9epejfqxRnDKhA4/bDaG5xy8oWAPzLyN746YWDYTFFdmulv2tIykv8W8n82L/VyJb+rcV+iX0uJbM5pqmztTymEqXbHtsfsc+hlI4YU683kPI70qgwsUjTMJ8viEDAhZISMyzfv+Ey31/qkw4fXv/wG/zj62PRVShpvvj48yP4x9fH8NMLB2PiqD7Q5fgcoijixEkPDh13Ivx9ptTOMqsZ02trsOvbVmz58ig8vtzfz9CvpxXXXHIGBvS2JfWBUgfHdJOyEhNpqjbGHtzl5Mc+vqP7RW5+qmxRFBXPTszimHatfV2JbClDErs/KpHfEWMaDotwODwI8D1jmsIiTeMiv3heeL0BWK0W6PW5/UKHQmGs33oQ7zTuRTAU+VRO4mq7KAJefwgvr9mJj7YfwtWXnoEBvWxZ5bs8Aew/aofXn3pikK4KMLhvOar72LDly2bsaGpBNq/zis0GXF5bg/PHnIZwmsks9lVvPhNppkkycaLOJzvdQUWJg2OmV/sd1S/5ZrfXLxxT7uuJ+anypJ/l9ouW2w4ALpcfHo8/57ZR5+NloTQg3WWhUikqMqGkJHJasr1f6G8OnMTLa77G0e+yP9WoE4CwCNSO7oPp5w9CicWYcrtgMIyDxx1osfuyzpZ2xRa7Dx9tP4RjrZ602553Vi9cddHpKDIbsr78Uy4HmFxP8+SzfbZtyXV7tbO13C9abrua2VrvFzW2VzM7dns1x9TnC8Dp9CEczu4wL+fyRYFgCKs37s3r050mox6jBp/SZb+CQ06/ciWti/F4/PD5ArBazTCbU58Ctbv8ePPDb7Dlq2ZkOT9ESb/rH/3zMD79+hiuvOh0nHdWr+gpUFEU8V2bFwePO7OeGCRSOytsZlxx/iDs2NeCv33VDF/MKtxpVSX4+SVnYNBpZQiLYk6nXrNdDcjn/SbZvqLOdyUim1fUmV7xt5edTdvU7pd8255Nv6RrU3vZqdqXLp9jmjq7UPtF6bZnu8rbEWPKU5tdB4u0LigcFmG3e2E0BlBaaoFOF/mFDoXDaNx2GG9v2INAMPLLm++LFlEE3N4gXly9Ax9tO4SrLx2KSpsF+4864PEFZbVfKryG9q/AoNPK8MkXR7HviB0/mVSNC8/uFz0Vmut74yTpDgJKvP8jXVa+E3Oq7MS82OeTm5+pX+Rmx2al6pd881P1g9JjKh3UE7O1Pqbc15P7RcttBwC32w+3m6c2uwoWaV1YIBBCS4sLxcUmmC0G/L+XtmL/UYfiz7P/qB0r1+/BxFG9ZU36iXQ6AUZBhynn9sOQ/hUw6nVZn9psT7qJVKn2J06kqZ5XTrYauYk5Wu4XpdueapUk8T4l85XKTczR8pjG/qxkdmx+qvvk5Cf2i5pj6veH4HR6cz6DQYWNRVo34Hb7cbzFpUqBBkROgfbvXapogSYRBAElFiPMRnWu6hY7kSrdfrkrRLnkq5HdFfpFy21XI5tjmjo72/fX5ZMd+7ca+aIowuPxw+nM/v2/pB38MttuIpz75dSIiEgDQiFO8F0VizQiIiKiAsQijYiIiKgAsUgjIiIiKkAs0oiIiIgKEIs0IiIiogLEr+AgIiIi2UwGPQTk/nUjRoMOgIDIN5Wo9zU0HUXJS1uxSCMiIiJZBEHAoH5leT9erxfg9AbyvgpOIbGYDVDqmz1ZpBEREZEsoihi/xE7gnl+Z1soLCIU0n6FZjToMHxgpWIXi2eRRkRERLK5vUH4eVF3RfGDA0REREQFiEUaERERUQFikdZNHGluVvcJtP9WAiIiTdLreSjvqjiyXZzP58OzK17Ev183E63Hvo3cqPDHZ8LhEPYfaYMoigiFgopmA4DLG0AgGFb0Y82S2Eyl89XMljKlP2pkp/p3oWdLmVKuVtvOMU3OV3tM1eh3NbNj84uKTLDZiqDTaf/rKygei7QubOPmLfjJjOvxdMMf4Pf78b9vP4XtG99CMOhHOJzfJ3BiiWIk4/jBnXjgtqtwzZU/xq6vv4zcp0C+JBAM48um73Cs1aPYZBebIQhCytsLNV/qA0EQon86ol/UylcyW8pRq88lXWVMldCR/aJ0tqSj8tUcU5NJj8rKEhQXm2TnU+EQRDXKe1JUKBRGS4sr6+2PHG3G4seW4cMNG6HT6ZIKMnORFWeOn4YBQ8+BGA5D0OVeq4fDIfi9Lmz+n2ewa9v70dU5QRBwxZVX41d33Ifi4mLo9cp+gLjIrEe/U22wFhujk3cu0h1QUm2Ta3Y2j5WbLU30qR7f3v3Z5Gdqm9r9km/bs3ksx5T9kkvbtN72cFiE0+mF35/bJy2rqkpzbo8kEAxh9ca93f7TnSajHqMGnxL3FRxy+pVFmgZkW6QFAgG88OfX8PvnXkAoFEIolPmXpUevgRhd+1OUlveMfMdzFhNGOByCAAFffvIO/v7+H+D3OFNuV1ZegTm33Y1/vfJqhMWw4sVapc2CvqdaodcJWU90uUy8uU6k+WyfbVty3V7tbC33i5bbrma21vtFje3VzI7dXs0x9fkCcDp9CIezO8yzSJOPRVo3lE2R9snf/4H7lzyKg4eO5LScLgg61Jz5Lxg+rg46vQG6NKtq0i/98YM70bjycZw4/E1W+WeNHIu7H1iKIWecmfcrx3T0OgG9TylBVXnR9/8XdVZpMmVnu02+7Srk1av22qV2v6jV9lwPtrm2i2OqvX7RctsBwO32w+32t7s9izT5WKR1Q5mKtOZjx/HIE09jzbr/TXlqM1vm4lKMmPAT9Bs8BqIYhiD8UKyFwyEEfB58sroeX3/6bvTUZrZ0Oh3+7f9ci1tvvxeWoiIVToEa0L9nKUqKkk+Bypk8Y6XKUTtbzimR9nK01C+xWUr2S2J27O0cU/ZLqvzEHC21PRwW4XB4EchQRLFIk49FWjeUrkhbvXYdFj70CALBAEJ5Xooj0Sm9azCm9kqUlJ0SKcYEATv+tgp/W7MCPrddVnZF5Sm49fZ7cfm//XukEISQ1SnWbPUos+C0qsgpUImSK3eJE6nSK4OJv4paytZyv2i57Wpmd4V+Ubrtsf0R+xxK6Ygx9XoDcDi8KbdhkSYfi7RuKF2RdtV1s7FjZ3anHXMh6HTof/pYVFSdhm3r/4zjB3cqmj/23PPQ8Ke/Kpop0esEDOlfAYtJr+gE11GUPhh2dL5alFpR6Awc09S02m61dcS+3tLiTHmdTBZp8ildpPHanRqmVn0thsP4+u/vwvHdAVXyP9v2qSq5QOQivW5vABaTXrXnoM7BAzrlQqtFYOJKHXVv/J40IiIiogLEIo2IiIioALFIIyIiIipALNKIiIiIChA/OEBERESyGQ1c91G6D1ikERERkSyCIGD4wMrObkZBsJgNin1Cl0UaERERySIAsFqMnd2MgqDkV6iwSCMiIiLZ+P1uyuMJZCIiIqICxCKNiIiIqACxSCMiIiIqQCzSiIioy9HidTuJErFI07Chgweplm00FQEA9Hp1LlR+YH+Tam8y9fpDql2kWBTF6B81stW8uLKa+R3RL9K/1cjnmKbO5ph2fDag3kXWRVFEOBz5Q9rAIk3DHrjnDtx9+69QXFQEvU6ZodTr9dDpdPjF7Nn4n/9Zi7POGglAmVelUsbo0WNRZhZRalH+w8WCAPi9AbS1uREOKzeRSjk+XxCtrW74/cG425XID4VEnDzphsvlV/QgIGW53X60troRCoUVy5cyAoEQTp50wesNqNJ2u90Du90DUVS2z0VRhNcbwMmTbgQCoejtSmQDQCgURmurC263OmPqcvlw8qQ6+7rfH9nXfT7l9/VwWERbmxsOh1eVMfV4ImMaDIajtyuRDQDBYBitrW54PGrs64DD4UVbm0e1+aulxQV+CFM7BJGfmS14oVAYLS2utPd/19KKR5c9i3dWr4FOp0M4HM75OaRXbmePGYWFd96GQdUDAADhcBh//vOfsGjRPXC5nAiFQnn9H3Q6HWy2MjzwwP/FjBk/jxZs/mAYrW4//EH5u2GJSY+yYiP0uh8KypISE4qKTADyKzRjD7ZOpy96IAcAk0kPq9UCnU7Iu4iV8l0uPzwef/R2nU6A1WqG2WyMW3XINVsQBPh8QTid3rhXz0VFRpSUmAHkX4BLB1un0xctWgHAYNChtNQCg0Evq+0A4PEE4Hb7ogcVQQBKSsywfP99THL6JRAIwen0Rg/kAGA2G2C1miEI8sZUFAGXywevNxC9XacTUFpqgclkkD2mXm8ALpcvbkyLi00oLs5/X5fyw2ERDoc3bl83GiP7ul4vf193u/1wu3/Y1wUhsq9bLPL3db8/CKfTh1DohzG1WCL7uiDI6xdRBJxOb7RoBQC9XofSUjOMRvlj6vH4oy/QJHLnLyk/1fyVSlVVaV7PAbR/nOrO5PQrizQNyHbn37r9M9y/5DHsadqXU75Op0N5mQ13zZ+Luh9flHIyaGn5Dr/97f146aUXoNPpsi7W9Ho9wuEwbrzxJvzmN/eirKw8aRtRFOH2h3DSHUA+q/BGvYCKEhPMaS7HodfrYLWacz44/lBA+eDxBNJul8/B8YcCKgCn05f29IPRqEdpae6F4A8FlBd+f+qx0umEaMGTT79IB5V08jk4/lBABeFwxB9sYxkMOlitFhiNuRWC6QqoWIIAFBebUVSUWyEYW0A5nb60qyAmU6QQzGdMQ6HImKY72OZb3KcroBLlU9zHF1BehEKp+8Vg0KO01Ay9XpdzvihGXizEFlCx8i3upX7NTdzoAAAVAUlEQVSRiuJ0R8tIcW/JeV8HIvO7wxH/YiGW2vNXLBZp6mCR1sXlsvMHg0G88sbb+N0zDQj4AwhlWFXT6/UQxTCumXEl/vOmG2C1lrSbv3Xrp/j1r3+FL7/8PON20srcqFFj8Oijv8PIkaPbzQ6HRbR5AnD6sisABQBlxUZYzfqsJq5sV0kyrVakk8sqSbrVikyyLQSzPdjGiqySRA6O2fRLqtWKdHJZJUm3WpFJtoVgtgfbWNmukmRabc0k21WSdKutmWS7yptptTWdXIr7dKutmWRbCKZbbc0k2+I+02prOrkU99m8WEik5vwlYZGmDhZpXVw+O//xE9/h//3u91i9dl3SKVCpgBo94kwsvOvXGDK4Jsf2hPDii3/Agw8uhMfjSVpV0+n0sFqtWLToIfz859dCl+P75fzBMFpcfgTSvOIGgGKTHuUJpzaz0d5Ems1qRSaZVknyKaBiZVolyXa1IpNMB8dsVisyybRKkk8BFSvTKonUL8FgKONqRSaZVknyWa2IlWmVJNvV1kwyFffZrLZmkmmVN9vV1nQyFYLZrrZmkqm4z6eAihUp7lMXgtmutqaj9vzFIk0dLNIKyJ49e/DQQw9h27ZtKCkpwfTp0zFv3jyYTKa8M+Xs/H/7dBvuX/Io9h84CCByarPUasWd8+fgJ3UXy/pAwPHjx/HAA/fi1Vf/HP0UaDgcxjXXXI+7774PlZU98s4WRRGu70+Bxu6hBp2AyhIjzEZ5nzpNXCWR5LJakUnsKgkA2QfbWImrJPmsVqSTeHCU5LJakUlsIQgg59WKTBJXSQDIOtjGSjw4Sm3PZ7UilcRVknxWW9OJFPcWmBMu+pzvi4VEsYUggJxXWzNJXOXNZ7U1HUEQor+nUr+ke29YPiwWA0pKIsW9JNfV1nQSi3uJ3PmLRZo6WKQViLa2NkybNg0DBw7EzTffjObmZixZsgSXX345Fi5cmHeu3J0/EAjgT395Ey++8hp+fNH5mHPzTNhK899pEm3Z8gkWLPgvGAx6LF68FGPHnqNYdigsos0dgCcQgq0o+1Ob2TKbDSgpMSMQCClysI0lTaQ6nQCXy5fXakUmxcUmFBUZvy8U5B9sY0kHR6n4k3uwjSUVgkajHm63X3YBlchiMaK42PR98Zf7akUmUnEvCIIiB9tYUiFosRi+L4qVHVOTKbKvh0JhuFz5rbamI63yGgx6uFz5rbZmUlRkRFGRCX5/MK/V1kyk4h6AIi8WYkmrvCaTAR6PP6/V1kyk+SsYDCnyApBFmjpYpBWI+vp6PPvss1i/fj3KyyNvkH/11Vdx//33Y/369ejZs2deudz5iYhIbSzS1CGnX/k9aQpqbGzEhAkTogUaANTV1SEcDmPTpk2d2DIiIiLSGhZpCtq7dy9qauLfhG+z2VBVVYW9e/d2UquIiIhIi5T/yvduzG63w2azJd1eVlaGtra2vHN1OgGVle1/PQYRERF1HSzSNEAQBOj1vFgwEREVJr1eJ+u9V5QaT3cqyGazweFwJN3e1taGsrKyTmgRERERaRWLNAXV1NQkvffM4XDg+PHjSe9VIyIiIsqERZqCamtr8fHHH8Nut0dve++996DT6TBx4sRObBkRERFpDb8nTUHSl9lWV1fHfZntT37yE1lfZktERETdD4s0he3ZswcPPvhg3GWh5s+fL+uyUERERNT9sEgjIiIiKkB8TxoRERFRAWKRRkRERFSAWKQRERERFSAWaUREREQFiEUaERERUQFikUZERERUgFikacSePXtw4403YvTo0Zg4cSIeeeQR+P3+zm6Wqvbv34+FCxdi+vTpGD58OC677LKU273++uu45JJLMGLECFx++eVYv3590jYOhwMLFizAuHHjMGbMGNx66604duyY2v8FVbz77rv4j//4D9TW1mL06NGYPn063njjDSR+m0536xcA2LBhA6655hqcd955OOusszBlyhQsXrw46Zq6H374IS6//HKMGDECl1xyCd58882kLL/fj4cffhgTJ07E6NGjceONNyZd9k2rXC4XamtrMXToUHz++edx93W3/WblypUYOnRo0p+lS5fGbdfd+oUKA4s0DWhra8P111+PQCCAZcuWYf78+XjttdewZMmSzm6aqr755hts2LABAwYMwKBBg1Jus2rVKtx7772oq6tDQ0MDRo8ejTlz5mD79u1x282bNw+bNm3CokWLsHTpUjQ1NWH27NkIBoMd8V9R1B//+EcUFRXhrrvuwjPPPIPa2lrce++9ePrpp6PbdMd+AYCTJ09i5MiRuP/++7FixQrceOONePvtt/GrX/0qus2nn36KOXPmYPTo0WhoaEBdXR3uvvtuvPfee3FZDz30EF5//XXMnz8fy5Ytg9/vxw033JBU8GnR73//e4RCoaTbu+t+AwDPPfccXn311eifq6++Onpfd+4X6mQiFbxnn31WHD16tNja2hq97S9/+Ys4bNgw8ejRo53YMnWFQqHov++8805x2rRpSdv8+Mc/Fm+77ba422bMmCHedNNN0Z+3bt0qDhkyRPzoo4+it+3Zs0ccOnSouGrVKhVarq7vvvsu6bZ77rlHHDt2bLTPumO/pPPqq6+KQ4YMif6uzJw5U5wxY0bcNrfddptYV1cX/fnIkSPisGHDxL/85S/R21pbW8XRo0eLy5cv75iGq2T37t3i6NGjxVdeeUUcMmSI+Nlnn0Xv6477zZtvvikOGTIk5e+VpDv2CxUGrqRpQGNjIyZMmIDy8vLobXV1dQiHw9i0aVMntkxdOl3m3fPAgQPYt28f6urq4m6fOnUqNm/eHD0d3NjYCJvNFneR+5qaGgwbNgyNjY3KN1xllZWVSbcNGzYMTqcTbre72/ZLOtLvTSAQgN/vx5YtW3DppZfGbTN16lTs2bMHBw8eBABs3LgR4XA4brvy8nJMnDhR833z0EMP4d///d9RXV0ddzv3m9TYL9SZWKRpwN69e1FTUxN3m81mQ1VVVZd5j0w+pP974sFm0KBBCAQCOHDgQHS76upqCIIQt11NTU2X6b9//OMf6NmzJ6xWK/sFQCgUgs/nw5dffomnn34aF110Efr27Ytvv/0WgUAg6fdJOp0u/b/37t2LHj16oKysLGk7LffNe++9h127duGXv/xl0n3dfb+57LLLMGzYMEyZMgX19fXR08HdvV+ocxk6uwHUPrvdDpvNlnR7WVkZ2traOqFFhUH6vyf2jfSzdL/dbkdpaWnS48vKyvDFF1+o3Er1ffrpp1i9ejXuvPNOAOwXALjwwgvR3NwMAJg8eTIeffRRAPL7xmazafZ3zuPxYMmSJZg/fz6sVmvS/d11v6mqqsLcuXMxatQoCIKADz/8EE888QSam5uxcOHCbtsvVBhYpBFp2NGjRzF//nyMHz8e1113XWc3p2AsX74cHo8Hu3fvxjPPPINbbrkFf/jDHzq7WZ3qmWeeQY8ePfDTn/60s5tSUCZPnozJkydHf540aRLMZjNeeOEF3HLLLZ3YMiKe7tQEm82W8hNlbW1tSadjuhPp/57YN3a7Pe5+m80Gp9OZ9Hit95/dbsfs2bNRXl6OZcuWRd/D1937BQDOOOMMjBkzBldddRV+//vfY8uWLXj//fdl943dbtdk3xw6dAjPP/88br31VjgcDtjtdrjdbgCA2+2Gy+XifhOjrq4OoVAIO3bsYL9Qp2KRpgGp3tPgcDhw/PjxpPfWdCfS/z2xb/bu3Quj0Yh+/fpFt2tqakr6HrGmpibN9p/X68XNN98Mh8OB5557Lu40S3ful1SGDh0Ko9GIb7/9Fv3794fRaEzZN8APfVdTU4MTJ04kndpM9f5QLTh48CACgQB+8Ytf4Nxzz8W5554bXSW67rrrcOONN3K/SYP9Qp2JRZoG1NbW4uOPP46+cgMibwDW6XRxnyTqbvr164eBAwcmfb/V6tWrMWHCBJhMJgCR/mtra8PmzZuj2zQ1NeGrr75CbW1th7ZZCcFgEPPmzcPevXvx3HPPoWfPnnH3d9d+Seef//wnAoEA+vbtC5PJhPHjx2PNmjVx26xevRqDBg1C3759AUROeel0Oqxduza6TVtbGzZu3KjJvhk2bBhefPHFuD+/+c1vAAD3338/7rvvPu43MVavXg29Xo/hw4ezX6hT6RctWrSosxtBmZ1++ul4/fXX8fHHH+PUU0/F3//+dzz88MP46U9/imnTpnV281Tj8Xiwbt067N69G5s2bcKJEyfQq1cv7N69G5WVlSgqKkJFRQWeeuophMNhAEBDQwPWr1+PxYsXo3fv3gCA3r17Y/v27XjjjTfQs2dPHDhwAPfddx+qqqqwYMGCdr/qo9Dcd999WLVqFebNm4cePXrg6NGj0T+VlZXQ6/Xdsl8AYM6cOfj222/hcDhw9OhRfPDBB/jtb3+Lfv364a677oJer8dpp52GZ555BsePH0dRURFWrlyJl19+GQsXLsTpp58OALBarWhubsYLL7yAHj16oKWlBQ8++CA8Hg8WL14Ms9ncyf/T3JjNZvTt2zfuj8/nw1tvvYU5c+bgrLPOAoBuud/MmjULzc3NcDqd2L9/P55//nm8/PLLuPbaa6NfwdId+4UKgyAmrs1SQdqzZw8efPBBbNu2DSUlJZg+fTrmz58ffRXXFR08eBBTpkxJed+LL76I8ePHA4hcrqWhoQGHDx9GdXU1brvtNlx44YVx2zscDixevBjvv/8+gsEgJk2ahHvuuSdpFUoLLrroIhw6dCjlfevWrYuuBnW3fgEiHxhYvXo1vv32W4iiiNNOOw0XX3wxZs2aFfeJxnXr1uGJJ55AU1MT+vTpg1/84he48sor47L8fj8ef/xx/PWvf4XL5cLYsWNxzz33pL36hdZs2bIF1113Hd544w2MGDEient3228eeughfPTRRzh69CjC4TAGDhyIq666Ctdee23c12l0t36hwsAijYiIiKgAcf2ViIiIqACxSCMiIiIqQCzSiIiIiAoQizQiIiKiAsQijYiIiKgAsUgjIiIiKkAs0oiIiIgKEIs0IiIiogLEIo2IiIioALFIIyICsGHDBixbtqyzm0FEFMUijYgIkSLtqaee6uxmEBFFsUgjIiIiKkC8wDoRdahDhw6hoaEBmzdvxpEjR1BUVITx48fjjjvuQN++faPbBQIB1NfX45133sGRI0dQXFyMmpoazJkzBxMnTgQAHD9+HI899hg2bdqElpYWlJeXY8SIEbj77rvjsjZs2ID6+np89dVXEAQB5557Lv7rv/4Lp59+OgDgrrvuwltvvZXU1p07dwIAVq1ahRUrVqCpqQmCIOC0007DlVdeieuvv17NriKibs7Q2Q0gou7l888/x7Zt2zBt2jT06tULhw4dwiuvvILrrrsOq1atQlFREQDgqaeeQn19Pa666iqMHDkSTqcTX3zxBb788stokTZ37lzs3r0b11xzDU477TS0tLRg06ZNOHLkSLRIe/vtt3HXXXdh0qRJuP322+HxePDKK6/g5z//Od566y307dsXM2bMwLFjx7Bp0yY88sgjce3dtGkTbrvtNkyYMAG33347AGDv3r3YunUrizQiUhVX0oioQ3m9Xlgslrjbtm/fjhkzZuDhhx/GFVdcAQCYPn06evXqhfr6+pQ5drsd5557Lu644w7MmjUr5TYulwsXXHABLr30Ujz44IPR20+cOIFLL70UdXV10dsfeOABvPzyy9HVM8lvf/tbrFy5En/729+g1+vz/n8TEeWK70kjog4VW6AFAgG0traif//+sNls+Oqrr6L32Ww2fPPNN9i3b1/aHKPRiL/97W9oa2tLuc3HH38Mu92OadOmoaWlJfpHp9Nh1KhR2LJlS7vttdls8Hg82LRpU27/USIimXi6k4g6lNfrRX19PVauXInm5mbELuY7HI7ov2+99Vb853/+Jy655BIMGTIEkyZNwvTp03HGGWcAAEwmE26//XY8/PDDmDhxIkaNGoULLrgAV1xxBaqqqgAgWuClOy1ptVrbbe/Pf/5zvPvuu5g9ezZ69uyJiRMnoq6uDrW1tfl2ARFRVlikEVGHevDBB7Fy5Upcf/31GD16NEpLSyEIAubPnx9XsJ177rl4//33sW7dOmzatAlvvPEGXnjhBdx///246qqrAAA33HADLrroInzwwQfYuHEjfve732H58uV44YUXMHz48GjeI488Ei3cYmVz+rJHjx54++23sXHjRjQ2NqKxsRErV67EFVdcgYcfflihXiEiSsb3pBFRhzrnnHNw8cUXY/HixdHbfD4fxowZg8svvxxLlixJ+TiXy4VrrrkG3333HRobG1Nus2/fPlxxxRX40Y9+hKVLl+Ldd9/FvHnzsGLFCkyaNCljux588EG89NJLSe9JSxQOh7Fo0SK8+uqrWLt2LQYMGNDO/5iIKD98TxoRdahUq1d/+tOfEAqF4m5rbW2N+7mkpAT9+/eH3+8HAHg8Hvh8vrht+vfvj5KSkug2kydPhtVqRX19PQKBQNLztrS0RP8tfarUbrdnbIdOp8PQoUMBIPo8RERq4OlOIupQF1xwAf7617/CarVi8ODB2L59Oz7++GOUl5fHbTdt2jSMGzcOZ555JsrLy/H5559jzZo1uOaaawBEVs1uuOEGXHrppRg8eDD0ej0++OADnDhxAtOmTQMQec/ZokWLcMcdd+Df/u3fMHXqVFRWVuLw4cPYsGEDxo4di4ULFwIAzjzzTADAQw89hEmTJkGv12PatGm455570NbWhvPOOw89e/bE4cOH8dJLL2HYsGEYNGhQB/YcEXU3PN1JRB3Kbrdj8eLFWL9+PXw+H8aOHYu7774bN910E8aNGxc93fnMM8/gww8/xL59++D3+9GnTx9Mnz4ds2bNgtFoRGtrK5YtW4bNmzfj6NGj0Ov1qKmpwY033oi6urq459yyZQuWL1+Of/7zn/D7/ejZsyfOOeccXH311TjrrLMAAKFQCIsXL8aqVavQ2toKURSxc+dOrFmzBq+99hp27NgBu92OqqoqTJ48GXPnzk35PjciIqWwSCMiIiIqQHxPGhEREVEBYpFGREREVIBYpBEREREVIBZpRERERAWIRRoRERFRAWKRRkRERFSAWKQRERERFSAWaUREREQFiEUaERERUQFikUZERERUgFikERERERUgFmlEREREBYhFGhEREVEB+v+56d3QshF/AwAAAABJRU5ErkJggg==" -} -``` - -#### Create Pair Plot - -This action is used to create a pair plot that illustrates the distribution between all numerical columns in a data set: [https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot](https://seaborn.pydata.org/generated/seaborn.pairplot.html#seaborn.pairplot). - -##### Input - -|Name|Type|Default|Required|Description|Enum|Example| -|----|----|-------|--------|-----------|----|-------| -|color_palette|string|dark|True|Color palette of the plot|['deep', 'muted', 'bright', 'pastel', 'dark', 'colorblind']|dark| -|csv_data|bytes|None|True|Base64 encoded CSV data from which to create the plot|None|UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==| -|hue|string|None|False|Column by which to provide data segmentation (labels)|None|ExampleColumnName| -|kind|string|scatter|True|Kind of data representation to use in the created plot|['scatter', 'reg', 'resid', 'kde', 'hex']|scatter| -|margin_style|string|dark|True|Style of the margin of the plot|['darkgrid', 'whitegrid', 'dark', 'white', 'ticks']|dark| - -Example input: - -``` -{ - "color_palette": "dark", - "csv_data": "UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg==", - "hue": "ExampleColumnName", - "kind": "scatter", - "margin_style": "dark" -} -``` - -##### Output - -|Name|Type|Required|Description|Example| -|----|----|--------|-----------|-------| -|csv|bytes|True|Base64 encoded CSV data used to generate the plot|c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK| -|plot|bytes|True|Base64 encoded PNG plot data (can be attached to an email)|iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg==| - -Example output: - -``` -{ - "csv": "c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK", - "plot": "iVBORw0KGgoAAAANSUhEUgAAA9EAAAPYCAYAAADdP3q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3X1wVOX9///XbjAJJOym0EC5j4kFEUXKfYgNFEWJWoOIEgENN6PRblVC8fOl1kb4RDEGkEJQodw0kCopnzJURkoKaiU1AYsKfiwiQhYpmI8BudksISFkd39/OOTnNiRsOBtyTJ6PGWc41znXdb1PZnbG15xzXcfi8/l8AgAAAAAAl2Vt7gIAAAAAAPi+IEQDAAAAABAgQjQAAAAAAAEiRAMAAAAAECBCNAAAAAAAASJEAwAAAAAQIEI0AAAAAAABIkQDAAAAABAgQjQAAAAAAAEyXYg+cuSIMjIylJycrBtuuEF33313QP18Pp9+//vfa9SoUerfv78mTpyovXv3NnG1AAAAAIDWxHQh+uDBg9qxY4d69eqluLi4gPutXLlSS5cu1dSpU7VixQpFR0dr+vTpOnr0aBNWCwAAAABoTSw+n8/X3EV8l9frldX6bbafM2eO/vWvf+mtt95qsM/58+c1YsQITZ48WbNmzZIkVVdXa+zYsUpMTNTcuXObumwAAAAAQCtguifRFwN0Y3z88cc6e/askpKSattCQ0M1ZswYFRYWBrM8AAAAAEArZroQfSWcTqckKTY21q89Li5OpaWlqqqqao6yAAAAAAAtTIsI0eXl5QoNDVVYWJhfu81mk8/nk8vlaqbKAAAAAAAtSZvmLsDMPB6vTp2qaO4ygKsuOrp9c5cQEH6jaM34nQLmxm8UMDcjv9EW8STaZrOpurpa58+f92svLy+XxWKR3W5vpsoAAAAAAC1JiwjRF9dCHz582K/d6XSqa9euCg8Pb46yAAAAAAAtTIsI0QMHDlRkZKS2bt1a23bhwgVt27ZNiYmJzVgZAAAAAKAlMd2a6MrKSu3YsUOS9NVXX+ns2bMqKCiQJA0dOlQdOnRQamqqSktLtX37dklSWFiY0tLSlJOTow4dOqh3795av369zpw5oxkzZjTbvQAAAAAAWhbTheiTJ0/qqaee8mu7eLxu3ToNGzZMXq9XHo/H75pHHnlEPp9Pa9as0alTp9S3b1+tXr1aPXr0uGq1AwAAAABaNovP5/M1dxFmxW6FaK3YURQwP36ngLnxGwXMrdXvzg0AAAAAwNVAiAYAAAAAIECmWxP9fWO1WmS1WgyN4fX65PXyVj0AAAAAmB0h2gCr1aKoqHYKCTH2QN/j8erMmXMEaQAAAAAwOUK0AVarRSEhVi18/SMdK3Nf0RjdO7fX7MmDZLVaCNEAAAAAYHKE6CA4VuZWyVeu5i4DAAAAANDE2FgMAAAAAIAAEaIBAAAAAAgQIRoAAAAAgAARogEAAAAACBAhGgAAAACAABGiAQAAAAAIECEaAAAAAIAAEaIBAAAAAAgQIRoAAAAAgAARogEAAAAACBAhGgAAAACAABGiAQAAAAAIECEaAAAAAIAAEaIBAAAAAAgQIRoAAAAAgAARogEAAAAACBAhGgAAAACAABGiAQAAAAAIECEaAAAAAIAAEaIBAAAAAAgQIRoAAAAAgACZLkSXlJRo2rRpGjBggBISEpSdna3q6urL9jt9+rQyMjI0atQoDRgwQHfffbfWr19/FSoGAAAAALQWbZq7gO9yuVxKTU1VTEyMcnJyVFZWpqysLFVVVSkjI6PBvk899ZScTqdmzZqlLl26qLCwUHPnzlVISIgeeOCBq3QHAAAAAICWzFQhOj8/XxUVFVq2bJmioqIkSR6PR/PmzVNaWpo6d+58yX4nTpzQBx98oBdffFHjx4+XJMXHx+vTTz/Vli1bCNEAAAAAgKAw1evchYWFio+Prw3QkpSUlCSv16uioqJ6+9XU1EiS2rdv79ceGRkpn8/XNMUCAAAAAFodU4Vop9Op2NhYvzabzabo6Gg5nc56+3Xp0kW33HKLli9frkOHDuns2bP661//qqKiIk2ePLmpywYAAAAAtBKmep27vLxcNputTrvdbpfL5Wqwb05OjtLT03XXXXdJkkJCQvTss8/qjjvuaJJaAQAAAACtj6lC9JXy+Xz69a9/rS+//FKLFi1SdHS0iouLNX/+fNnt9tpgDQAAAACAEaYK0TabTW63u067y+WS3W6vt997772ngoICbd68WX369JEkDRs2TCdPnlRWVhYhGgAAAAAQFKZaEx0bG1tn7bPb7daJEyfqrJX+rkOHDikkJES9e/f2a+/bt6+OHz+uysrKJqkXAAAAANC6mCpEJyYmqri4WOXl5bVtBQUFslqtSkhIqLdft27d5PF4dODAAb/2ffv2qWPHjmrbtm2T1QwAAAAAaD1MFaJTUlIUEREhh8Oh999/Xxs3blR2drZSUlL8vhGdmpqqMWPG1B4nJiaqa9euevLJJ/Xmm29q586dWrBggTZt2qQpU6Y0x60AAAAAAFogU62JttvtWrt2rTIzM+VwOBQREaEJEyYoPT3d7zqv1yuPx1N7HBkZqdzcXC1evFgLFy6U2+1W9+7dNWfOHEI0AAAAACBoTBWiJSkuLk65ubkNXpOXl1enrVevXvrd737XRFUBAAAAAGAwRPt8Pv3pT3/Sn//8Zx09etRvLfNFFotFn332mZFpAAAAAAAwBUMhOjs7W7m5uerbt6/uueeeBj9DBQAAAADA952hEP2Xv/xFt99+u5YsWRKsegAAAAAAMC1Du3NXVVVpxIgRwaoFAAAAAABTMxSi4+Pj9emnnwarFgAAAAAATM1QiH7uuef0ySefaPny5Tp9+nSwagIAAAAAwJQMrYkeO3asfD6flixZoiVLligsLExWq38ut1gs+uijjwwVCQAAAACAGRgK0XfccYcsFkuwagEAAAAAwNQMheisrKxg1QEAAAAAgOkZWhMNAAAAAEBrYuhJtCSdPXtWubm5eu+991RaWipJ6tq1q0aNGqWpU6cqMjLScJEAAAAAAJiBoSfRZWVlGjdunJYtW6Zz585p4MCBGjhwoCorK7Vs2TLde++9On78eLBqBQAAAACgWRl6Er1w4UJ98803WrFihUaOHOl3bseOHZo5c6YWLVqkl156yVCRAAAAAACYgaEn0f/4xz+UmppaJ0BL0siRI/XQQw9px44dRqYAAAAAAMA0DIXoyspKdezYsd7zP/zhD1VZWWlkCgAAAAAATMNQiI6Li9OWLVtUXV1d59yFCxe0ZcsWxcXFGZkCAAAAAADTMLQm+pFHHlF6erruv/9+TZo0STExMZKkw4cPKz8/XwcOHNDixYuDUScAAAAAAM3OUIhOSkpSZWWlFi1apOeee04Wi0WS5PP51LFjR82fP19jx44NSqEAAAAAADQ3w9+JHj9+vO655x7961//8vtO9I033qg2bQwPDwAAAACAaQQl5bZp00YDBgzQgAEDgjEcAAAAAACm1KgQvXv3bknSkCFD/I4v5+L1AAAAAAB8nzUqRD/00EOyWCz65JNPFBoaWntcH5/PJ4vFov379xsuFAAAAACA5taoEL1u3TpJUmhoqN8xAAAAAACtQaNC9NChQxs8BgAAAACgJbMa6fzwww9r586d9Z7ftWuXHn74YSNTAAAAAABgGoZC9D//+U9988039Z4/depUwJuPAQAAAABgdoZCtKQGNxY7cuSIIiIijE4BAAAAAIApNPo70Zs2bdKmTZtqj1977TVt2LChznVut1sHDhxQYmKisQoBAAAAADCJRofoyspKnT59uva4oqJCVmvdB9rt2rVTSkqKHA5Ho8YvKSnR888/rz179igiIkLJycmaOXNm7Y7gDSkrK9PLL7+sHTt26Ny5c+rWrZsef/xx3XPPPY2qAQAAAACAS2l0iJ40aZImTZokSRo9erR+85vf6NZbbw1KMS6XS6mpqYqJiVFOTo7KysqUlZWlqqoqZWRkNNj3+PHjmjhxoq699lplZmYqMjJSBw8eVHV1dVBqAwAAAACg0SH6u959991g1SFJys/PV0VFhZYtW6aoqChJksfj0bx585SWlqbOnTvX23fBggX60Y9+pFWrVikkJESSFB8fH9T6AAAAAACtm6GNxYqLi/Xyyy/Xe37x4sUNfgLrPxUWFio+Pr42QEtSUlKSvF6vioqK6u139uxZbd26VZMmTaoN0AAAAAAABJuhEP3qq6/q//7v/+o9X1ZWptdeey3g8ZxOp2JjY/3abDaboqOj5XQ66+23b98+XbhwQW3atNGUKVPUr18/JSQkaMGCBbpw4ULA8wMAAAAA0BBDIfqLL77QzTffXO/5m266SQcOHAh4vPLyctlstjrtdrtdLper3n4Xv1X97LPP6sYbb9Tq1auVmpqqtWvXaunSpQHPDwAAAABAQwytia6urm7wSW91dbWqqqqMTBEQr9crSRoxYoTmzJkjSRo+fLgqKiq0Zs0aORwOhYeHN3kdAAAAAICWzdCT6B//+Mfavn37Jc/5fD5t27ZNcXFxAY9ns9nkdrvrtLtcLtnt9gb7Sd8G5++Kj49XdXW1jhw5EnANAAAAAADUx1CInjJlij7++GM9+eSTOnDggGpqalRTU6PPP/9cTz31lPbu3auHHnoo4PFiY2PrrH12u906ceJEnbXS33Xdddc1OO758+cDrgEAAAAAgPoYep07OTlZR48e1auvvqrt27fLav02k3u9XlksFj3++OO69957Ax4vMTFRy5cv91sbXVBQIKvVqoSEhHr7devWTb1791ZxcbGmTJlS215cXKzw8PDLhmwAAAAAAAJhKERL0i9/+Uvdc8892r59u44ePSpJ6tmzp2677Tb17NmzUWOlpKQoLy9PDodDaWlpKisrU3Z2tlJSUvy+EZ2amqrS0lK/V8nT09P1i1/8Qi+88IJGjRqlTz/9VGvWrNGMGTPUrl07o7cJAAAAAIDxEC19G5pnzJhheBy73a61a9cqMzNTDodDERERmjBhgtLT0/2u83q98ng8fm2jR4/Wyy+/rFdffVXr169Xp06d9MQTT+jRRx81XBcAAAAAAFKQQnQwxcXFKTc3t8Fr8vLyLtl+55136s4772yCqgAAAAAAMBiir7/+elkslstet3//fiPTAAAAAABgCoZCtMPhqBOiPR6PvvrqK7399tu69tpr9bOf/cxQgQAAAAAAmIWhEP3EE0/Ue+748eOaOHGiYmJijEwBAAAAAIBpGPpOdEM6deqklJQUvfrqq001BQAAAAAAV1WThWhJatu2rY4dO9aUUwAAAAAAcNU0WYj+4osvlJeXx+vcAAAAAIAWw9Ca6NGjR19yd2632y23263w8HBe5wYAAAAAtBiGQvTQoUMvGaLtdrt69Oihu+66S1FRUUamAAAAAADANAyF6KysrGDVAQAAAACA6TXpxmIAAAAAALQkjXoSvWzZskZPYLFY5HA4Gt0PAAAAAACzMRyiL66J9vl8ddp9Ph8hGgAAAADQYjQqRH/++ed+x2VlZXr00Uf14x//WKmpqbr22mslSU6nU2vXrlVJSYlWrFgRvGoBAAAAAGhGhtZEz5s3T7169dLChQt10003KTIyUpGRkerfv78WLVqknj176r//+7+DVSsAAAAAAM3KUIjetWuXhg8fXu/54cOHa+fOnUamAAAAAADANAyF6LCwMO3du7fe83v27FFYWJiRKQAAAAAAMA1D34n++c9/rry8PNlsNk2ZMkU9e/aUJP373/9WXl6e3nrrLT300ENBKRQAAAAAgOZmKETPnj1bp0+f1h//+Ee9/vrrslq/fbDt9Xrl8/l01113afbs2UEpFAAAAACA5mYoRIeGhmrBggWaMWOGduzYodLSUklSt27dlJiYqOuvvz4oRQIAAAAAYAaGQvRF119/PYEZAAAAANDiBSVE7927Vx988IFOnjypSZMmKSYmRpWVlXI6nYqJiVFEREQwpgEAAAAAoFkZCtHV1dWaNWuW3nnnHfl8PlksFv3sZz9TTEyMrFarpk+frqlTp+rxxx8PVr0AAAAAADQbQ5+4WrJkid577z3NnTtXBQUF8vl8tefCwsI0duxYvfPOO4aLBAAAAADADAyF6C1btiglJUUTJ06U3W6vcz4uLk5Hjx41MgUAAAAAAKZhKESfPHlSffr0qfd8SEiIqqqqjEwBAAAAAIBpGArRXbp0kdPprPf8xx9/rJ49exqZAgAAAAAA0zAUou+++27l5+drz549tW0Wi0WStGHDBm3dulXjxo0zViEAAAAAACZhaHfuxx57TJ988ommTJmi2NhYWSwWvfjii3K5XPr66681cuRITZ06tVFjlpSU6Pnnn9eePXsUERGh5ORkzZw5U6GhoQGPkZubqxdffFGjRo3SihUrGnlXAAAAAABcmqEQHRoaqlWrVmnz5s3629/+Jq/Xq+rqavXp00czZ85UcnJy7ZPpQLhcLqWmpiomJkY5OTkqKytTVlaWqqqqlJGREdAYJ06c0CuvvKKOHTte6W0BAAAAAHBJVxyiL1y4oJKSEkVFRSk5OVnJycmGi8nPz1dFRYWWLVumqKgoSZLH49G8efOUlpamzp07X3aMBQsWaPTo0SotLTVcDwAAAAAA33XFa6KtVqvuu+8+bdu2LWjFFBYWKj4+vjZAS1JSUpK8Xq+Kioou2//DDz/U22+/rV/96ldBqwkAAAAAgIuuOESHhISoa9euqq6uDloxTqdTsbGxfm02m03R0dEN7gIuffvEOjMzU4899pg6deoUtJoAAAAAALjI0O7cU6ZM0YYNG3TmzJmgFFNeXi6bzVan3W63y+VyNdj3jTfeUGVlZaM3MgMAAAAAIFCGNhbzer0KDQ3VmDFjdMcdd6hbt24KDw/3u8ZisTR5sD158qSWLl2ql156qVG7eAMAAAAA0BiGQvRLL71U++8///nPl7ymMSHaZrPJ7XbXaXe5XLLb7fX2W7Jkifr06aPBgwervLxcklRTU6OamhqVl5erXbt2atPG0K0CAAAAAGAsRL/zzjvBqkOSFBsbW2fts9vt1okTJ+qslf6uw4cPa/fu3RoyZEidc0OGDNHKlSuVmJgY1FoBAAAAAK2PoRDdrVu3Rl1/7tw5rVmzRuPGjVP37t3rnE9MTNTy5cv91kYXFBTIarUqISGh3nGfeeaZ2ifQF82fP1/h4eGaNWuW+vTp06g6AQAAAAC4lKv6jvO5c+f0yiuvaNCgQZcM0SkpKcrLy5PD4VBaWprKysqUnZ2tlJQUv29Ep6amqrS0VNu3b5ck9e3bt85YNptN7dq107Bhw5ruhgAAAAAArYqh3bmvhM/nq/ec3W7X2rVrFRISIofDoUWLFmnChAmaM2eO33Ver1cej6epSwUAAAAAwI/pdtuKi4tTbm5ug9fk5eVddpxArgEAAAAAoDGu+pNoAAAAAAC+rwjRAAAAAAAEiBANAAAAAECACNEAAAAAAASIEA0AAAAAQIAMhei9e/de9po33nij9t8dOnTQO++8o0GDBhmZFgAAAACAZmEoRD/yyCPat29fvedXrFihzMzM/38yq1XdunVTaGiokWkBAAAAAGgWhkL0wIEDNX36dB04cKDOuUWLFmnx4sWaMWOGkSkAAAAAADANQyE6JydH/fr107Rp01RSUlLbPm/ePK1cuVLp6emaPXu24SIBAAAAADADQyE6NDRUr732muLi4pSamqpDhw7p6aefVn5+vn77298qLS0tWHUCAAAAANDs2hgdICwsTCtWrND06dM1btw4SVJWVpaSk5MNFwcAAAAAgJk0KkRv27at3nMTJkzQF198odtuu01t27b1u/b222+/8goBAAAAADCJRoXoJ598UhaLRT6fr865i+2bN2/W5s2b/dr3799vvFIAAAAAAJpZo0L0unXrmqoOAAAAAABMr1EheujQoU1VBwAAAAAApmd4Y7H/5PP5tGvXLlVXV2vQoEGKjIwM9hQAAAAAADQLQyF68eLF+vjjj5WXlyfp2wA9ffp07dq1Sz6fT127dlVubq569uwZlGIBAAAAAGhOhr4T/be//U39+/evPS4oKNDOnTs1c+ZMrVixQh6PRzk5OYaLBAAAAADADAw9iS4rK1OvXr1qj7dv367rrrtOaWlpkqQHH3xQ69evN1YhAAAAAAAmYehJdJs2bVRdXS3p21e5d+7cqZ/+9Ke15zt27KjTp08bqxAAAAAAAJMwFKJ//OMfa/PmzXK5XNq4caPOnDmjkSNH1p4vLS3VD37wA8NFAgAAAABgBoZe53Y4HHrsscc0fPhwSdLAgQNr/y1JO3bs0E033WSsQgAAAAAATMJQiE5ISNCmTZtUVFQkm82mO++8s/acy+XS4MGDdeuttxouEgAAAAAAMzD8nejrrrtO1113XZ12u92uZ555xujwAAAAAACYhqE10QAAAAAAtCaNehJ9/fXXy2q1au/evQoNDdX1118vi8XSYB+LxaLPPvvMUJEAAAAAAJhBo0K0w+GQxWJRmzbfdvvlL3/ZJEUBAAAAAGBGjQrRTzzxRO2/Kysr9e677+r+++/Xgw8+GLSCSkpK9Pzzz2vPnj2KiIhQcnKyZs6cqdDQ0Hr7HD9+XLm5uSoqKtK///1vtW/fXkOGDNGsWbPUrVu3oNUGAAAAAGjdrnhjsbZt2+rYsWOXfZ27MVwul1JTUxUTE6OcnByVlZUpKytLVVVVysjIqLffvn37tH37dt133326+eabdfr0ab322mu6//779dZbb6lDhw5BqxEAAAAA0HoZ2p37pz/9qd5//32lpKQEpZj8/HxVVFRo2bJlioqKkiR5PB7NmzdPaWlp6ty58yX7DRo0SFu3bq19zVz69pvVo0aN0l/+8hdNnz49KPUBAAAAAFo3Q7tz/+IXv9CXX36pp59+Wh9++KHKysp05syZOv8FqrCwUPHx8bUBWpKSkpLk9XpVVFRUbz+bzeYXoCXpRz/6kTp06KDjx483/sYAAAAAALgEQ0+i77rrLknSoUOH9NZbb9V73f79+wMaz+l06r777vNrs9lsio6OltPpbFRthw8f1smTJxUXF9eofgAAAAAA1MdQiL64W3ewlJeXy2az1Wm32+1yuVwBj+Pz+fT888+rU6dOtUEfAAAAAACjDIXo7+7WbSY5OTnatWuXVq1apXbt2jV3OQAAAACAFsJQiA42m80mt9tdp93lcslutwc0xoYNG/TKK6/ohRdeUHx8fLBLBAAAAAC0YoY2Fgu22NjYOmuf3W63Tpw4odjY2Mv23759u+bOnasnn3xSEyZMaKoyAQAAAACtlKlCdGJiooqLi1VeXl7bVlBQIKvVqoSEhAb7fvDBB5o1a5buv/9+ORyOpi4VAAAAANAKmSpEp6SkKCIiQg6HQ++//742btyo7OxspaSk+H0jOjU1VWPGjKk9LikpkcPhUExMjJKTk7V3797a//797383x60AAAAAAFogU62JttvtWrt2rTIzM+VwOBQREaEJEyYoPT3d7zqv1yuPx1N7/Mknn8jtdsvtduvBBx/0u/bee+9VVlbWVakfAAAAANCymSpES1JcXJxyc3MbvCYvL8/vePz48Ro/fnwTVgUAAAAAgMle5wYAAAAAwMwI0QAAAAAABIgQDQAAAABAgAjRAAAAAAAEiBANAAAAAECACNEAAAAAAASIEA0AAAAAQIAI0QAAAAAABIgQDQAAAABAgAjRAAAAAAAEiBANAAAAAECACNEAAAAAAASIEA0AAAAAQIAI0QAAAAAABKhNcxeA4LFaLbJaLYbG8Hp98np9QaoIAAAAAFoWQnQLYbVaFBXVTiEhxl4u8Hi8OnPmHEEaAAAAAC6BEN1CWK0WhYRYtfD1j3SszH1FY3Tv3F6zJw+S1WohRAMAAADAJRCiW5hjZW6VfOVq7jIAAAAAoEViYzEAAAAAAAJEiAYAAAAAIECEaAAAAAAAAkSIBgAAAAAgQIRoAAAAAAACRIgGAAAAACBAfOIKLZrVapHVajE8jtfrM8W3s1va/QAAAADfN4RotFhWq0VRUe0UEmL8hQuPx6szZ841a/BsafcDAAAAfB8RotFiWa0WhYRYtfD1j3SszH3F43Tv3F6zJw+S1Wpp9hDdku4HAAAA+D4iRKPFO1bmVslXruYuI2ha2v0AAAAA3yem21ispKRE06ZN04ABA5SQkKDs7GxVV1dftp/P59Pvf/97jRo1Sv3799fEiRO1d+/eq1AxAAAAAKC1MFWIdrlcSk1N1YULF5STk6P09HRt2LBBWVlZl+27cuVKLV26VFOnTtWKFSsUHR2t6dOn6+jRo1ehcgAAAABAa2Cq17nz8/NVUVGhZcuWKSoqSpLk8Xg0b948paWlqXPnzpfsd/78ea1YsULTp0/X1KlTJUmDBg3S2LFjtXr1as2dO/cq3QEAAAAAoCUz1ZPowsJCxcfH1wZoSUpKSpLX61VRUVG9/T7++GOdPXtWSUlJtW2hoaEaM2aMCgsLm7RmAAAAAEDrYaoQ7XQ6FRsb69dms9kUHR0tp9PZYD9JdfrGxcWptLRUVVVVwS8WAAAAANDqmOp17vLyctlstjrtdrtdLlf9uxGXl5crNDRUYWFhfu02m00+n08ul0vh4eGNrsdqtahDh4jLXte9c/tGj/2ffW22tlc8hllrMQsjf5Pv9jfL36Wl3Y8Rgf5GATQffqeAufEbBRrPVCHabCwWi0JCLJe9bvbkQYbnCgkJzksBZqrFLILxN5HM83dpafdjRKC/UQDNh98pYG78RoHGM9X/RdtsNrnd7jrtLpdLdru9wX7V1dU6f/68X3t5ebksFkuDfQEAAAAACJSpQnRsbGydtc9ut1snTpyos975P/tJ0uHDh/3anU6nunbtekWvcgMAAAAA8J9MFaITExNVXFys8vLy2raCggJZrVYlJCTU22/gwIGKjIzU1q1ba9suXLigbdu2KTExsUlrBgAAAAC0HqZaE52SkqK8vDw5HA6lpaWprKxM2dnZSklJ8ftGdGpqqkpLS7V9+3ZJUlhYmNLS0pSTk6MOHTqod+/eWr9+vc6cOaMZM2Y01+0AAAAAAFq2pLbVAAAgAElEQVQYU4Vou92utWvXKjMzUw6HQxEREZowYYLS09P9rvN6vfJ4PH5tjzzyiHw+n9asWaNTp06pb9++Wr16tXr06HE1bwEAAAAA0IJZfD6fr7mLAAAAAADg+8BUa6IBAAAAADAzQjQAAAAAAAEiRAMAAAAAECBCNAAAAAAAASJEAwAAAAAQIEI0AAAAAAABIkQDAAAAABAgQjQAAAAAAAEiRAMAAAAAECBCNAAAAAAAASJEAwAAAAAQIEI0AAAAAAABIkQDAAAAABAgQjQAAAAAAAEiRAMAAAAAECBCNAAAAAAAASJEAwAAAAAQIEI0AAAAAAABIkQDAAAAABAgQjQAAAAAAAEyXYg+cuSIMjIylJycrBtuuEF33313QP18Pp9+//vfa9SoUerfv78mTpyovXv3NnG1AAAAAIDWxHQh+uDBg9qxY4d69eqluLi4gPutXLlSS5cu1dSpU7VixQpFR0dr+vTpOnr0aBNWCwAAAABoTSw+n8/X3EV8l9frldX6bbafM2eO/vWvf+mtt95qsM/58+c1YsQITZ48WbNmzZIkVVdXa+zYsUpMTNTcuXObumwAAAAAQCtguifRFwN0Y3z88cc6e/askpKSattCQ0M1ZswYFRYWBrM8AAAAAEArZroQfSWcTqckKTY21q89Li5OpaWlqqqqao6yAAAAAAAtTIsI0eXl5QoNDVVYWJhfu81mk8/nk8vlaqbKAAAAAAAtSZvmLsDMPB6vTp2qaO4ygKsuOrp9c5cQEH6jaM34nQLmxm8UMDcjv9EW8STaZrOpurpa58+f92svLy+XxWKR3W5vpsoAAAAAAC1JiwjRF9dCHz582K/d6XSqa9euCg8Pb46yAAAAAAAtTIsI0QMHDlRkZKS2bt1a23bhwgVt27ZNiYmJzVgZAAAAAKAlMd2a6MrKSu3YsUOS9NVXX+ns2bMqKCiQJA0dOlQdOnRQamqqSktLtX37dklSWFiY0tLSlJOTow4dOqh3795av369zpw5oxkzZjTbvQAAAAAAWhbTheiTJ0/qqaee8mu7eLxu3ToNGzZMXq9XHo/H75pHHnlEPp9Pa9as0alTp9S3b1+tXr1aPXr0uGq1AwAAAABaNovP5/M1dxFmxW6FaK3YURQwP36ngLnxGwXMrdXvzg0AAAAAwNVgute5ASCYrFaLrFaL4XG8Xp+8Xl7cAQAAaO0I0QBaLKvVoqiodgoJMf7Sjcfj1Zkz5wjSAAAArRwhGkCLZbVaFBJi1cLXP9KxMvcVj9O9c3vNnjxIVquFEA0AANDKEaIBtHjHytwq+crV3GUAAACgBWBjMQAAAAAAAkSIBgAAAAAgQIRoAAAAAAACRIgGAAAAACBAhGgAAAAAAAJEiAYAAAAAIECEaAAAAAAAAkSIBgAAAAAgQIRoAAAAAAACRIgGAAAAACBAhGgAAAAAAAJEiAYAAAAAIECEaAAAAAAAAkSIBgAAAAAgQIRoAAAAAAACRIgGAAAAACBAhGgAAAAAAAJEiAYAAAAAIECEaAAAAAAAAkSIBgAAAAAgQIRoAAAAAAACRIgGAAAAACBApgvRJSUlmjZtmgYMGKCEhARlZ2erurr6sv1Onz6tjIwMjRo1SgMGDNDdd9+t9evXX4WKAQAAAACtRZvmLuC7XC6XUlNTFRMTo5ycHJWVlSkrK0tVVVXKyMhosO9TTz0lp9OpWbNmqUuXLiosLNTcuXMVEhKiBx544CrdAQAAAACgJTNViM7Pz1dFRYWWLVumqKgoSZLH49G8efOUlpamzp07X7LfiRMn9MEHH+jFF1/U+PHjJUnx8fH69NNPtWXLFkI0AAAAACAoTPU6d2FhoeLj42sDtCQlJSXJ6/WqqKio3n41NTWSpPbt2/u1R0ZGyufzNU2xAAAAAIBWx1Qh2ul0KjY21q/NZrMpOjpaTqez3n5dunTRLbfcouXLl+vQoUM6e/as/vrXv6qoqEiTJ09u6rIBAAAAAK2EqV7nLi8vl81mq9Nut9vlcrka7JuTk6P09HTdddddkqSQkBA9++yzuuOOO5qkVgAAAABA62OqEH2lfD6ffv3rX+vLL7/UokWLFB0dreLiYs2fP192u702WAMAAAAAYISpQrTNZpPb7a7T7nK5ZLfb6+333nvvqaCgQJs3b1afPn0kScOGDdPJkyeVlZVFiAYAAAAABIWp1kTHxsbWWfvsdrt14sSJOmulv+vQoUMKCQlR7969/dr79u2r48ePq7KysknqBQAAAAC0LqYK0YmJiSouLlZ5eXltW0FBgaxWqxISEurt161bN3k8Hh04cMCvfd++ferYsaPatm3bZDUDAAAAAFoPU4XolJQURUREyOFw6P3339fGjRuVnZ2tlJQUv29Ep6amasyYMbXHiYmJ6tq1q5588km9+eab2rlzpxYsWKBNmzZpypQpzXErAAAAAIAWyFRrou12u9auXavMzEw5HA5FRERowoQJSk9P97vO6/XK4/HUHkdGRio3N1eLFy/WwoUL5Xa71b17d82ZM4cQDQAAAAAIGlOFaEmKi4tTbm5ug9fk5eXVaevVq5d+97vfNVFVAAAAAACY7HVuAAAAAADMjBANAAAAAECACNEAAAAAAATIUIjeuXOnVq1a5df25z//WaNGjdKIESM0f/58vw3AAAAAAAD4PjMUonNycvT555/XHh84cEDPPfecOnTooKFDhyovL0+rV682XCQAAAAAAGZgKESXlJToxhtvrD1+8803FRkZqddff12/+93vdP/99+vNN980XCQAAAAAAGZgKERXVlYqMjKy9vgf//iHbrnlFrVt21aSdNNNN6m0tNRYhQAAAAAAmIShEN2lSxd9+umnkqQjR47o4MGDuuWWW2rPu1wuhYaGGqsQAAAAAACTaGOk889//nO98sorKisr06FDh2S323XrrbfWnt+3b59iYmKM1ggAAAAAgCkYCtGPPfaYLly4oB07dqhLly7KysqSzWaTJJ05c0b//Oc/9fDDDwelUAAAAAAAmpuhEN2mTRulp6crPT29zrmoqCgVFRUZGR4AAAAAAFMxtCb64Ycf1s6dO+s9v2vXLp5EAwAAAABaDEMh+p///Ke++eabes+fOnVKu3fvNjIFAAAAAACmYShES5LFYqn33JEjRxQREWF0CgAAAAAATKHRa6I3bdqkTZs21R6/9tpr2rBhQ53r3G63Dhw4oMTERGMVAgAAAABgEo0O0ZWVlTp9+nTtcUVFhazWug+027Vrp5SUFDkcDmMVAgAAAABgEo0O0ZMmTdKkSZMkSaNHj9ZvfvMbv29DAwAAAADQUhn6xNW7774brDoAAAAAADC9RoXo0tJSSVLXrl39ji/n4vUAAAAAAHyfNSpEjx49WhaLRZ988olCQ0Nrjy9n//79V1wgAAAAAABm0agQPX/+fFksFl1zzTV+xwAAAAAAtAaNCtHjx49v8BgAAAAAgJas7repGmHv3r2XveaNN94wMgUAAAAAAKZhKEQ/8sgj2rdvX73nV6xYoczMTCNTAAAAAABgGoZC9MCBAzV9+nQdOHCgzrlFixZp8eLFmjFjhpEpAAAAAAAwDUMhOicnR/369dO0adNUUlJS2z5v3jytXLlS6enpmj17tuEiAQAAAAAwA0MhOjQ0VK+99pri4uKUmpqqQ4cO6emnn1Z+fr5++9vfKi0tLVh1AgAAAADQ7AyFaEkKCwvTihUr1L17d40bN05bt25VVlaWJk+efEXjlZSUaNq0aRowYIASEhKUnZ2t6urqgPqWlZXp//2//6fhw4erf//+SkpK0ubNm6+oDgAAAAAA/lOjPnG1bdu2es9NmDBBX3zxhW677Ta1bdvW79rbb789oPFdLpdSU1MVExOjnJwclZWVKSsrS1VVVcrIyGiw7/HjxzVx4kRde+21yszMVGRkpA4ePBhwAAcAAAAA4HIaFaKffPJJWSwW+Xy+Oucutm/evNnv6a/FYtH+/fsDGj8/P18VFRVatmyZoqKiJEkej0fz5s1TWlqaOnfuXG/fBQsW6Ec/+pFWrVqlkJAQSVJ8fHxjbg8AAAAAgAY1KkSvW7euqeqQJBUWFio+Pr42QEtSUlKSnnvuORUVFWn8+PGX7Hf27Flt3bpV8+fPrw3QAAAAAAAEW6NC9NChQw1Ndv78eW3dulW33HKLfvjDH9Y573Q6dd999/m12Ww2RUdHy+l01jvuvn37dOHCBbVp00ZTpkzRnj17FBUVpXHjxmnmzJm65pprDNUNAAAAAIAUhI3FGsPtduvXv/61Dh48eMnz5eXlstlsddrtdrtcLle9437zzTeSpGeffVY33nijVq9erdTUVK1du1ZLly4NTvEAAAAAgFavUU+ig+FS66mN8nq9kqQRI0Zozpw5kqThw4eroqJCa9askcPhUHh4eNDnBQAAAAC0Llf1SfTl2Gw2ud3uOu0ul0t2u73BftK3wfm74uPjVV1drSNHjgS3UAAAAABAq2SqEB0bG1tn7bPb7daJEycUGxtbb7/rrruuwXHPnz8flPoAAAAAAK2bqUJ0YmKiiouLVV5eXttWUFAgq9WqhISEevt169ZNvXv3VnFxsV97cXGxwsPDLxuyAQAAAAAIhKlCdEpKiiIiIuRwOPT+++9r48aNys7OVkpKit83olNTUzVmzBi/vunp6Xr33Xf1wgsvqKioSMuXL9eaNWs0depUtWvX7mrfCgAAAACgBbrqG4s1xG63a+3atcrMzJTD4VBERIQmTJig9PR0v+u8Xq88Ho9f2+jRo/Xyyy/r1Vdf1fr169WpUyc98cQTevTRR6/mLQAAAAAAWjBThWhJiouLU25uboPX5OXlXbL9zjvv1J133tkEVQEAAAAAcJVDtN1u17p169S3b9+rOS0AAAAAAEFheE10aWmpMjIydMcdd2jo0KHavXu3JOnUqVN6/vnn9dlnn9Vee80112jo0KFq37690WkBAAAAALjqDIXoQ4cO6d5779XWrVvVvXt3ud1u1dTUSJI6dOigjz76SH/84x+DUigAAAAAAM3N0OvcCxYsUPv27bVhwwZJ0ogRI/zOjxw5Ulu3bjUyBQAAAAAApmHoSfTu3bv14IMPqkOHDrJYLHXOd+3aVWVlZUamAAAAAADANAyFaJ/Pp/Dw8HrPnzp1SqGhoUamAAAAAADANAyF6BtuuEE7duy45Lmamhpt2bJFN998s5EpAAAAAAAwDUMh+tFHH9U//vEPPffcczp48KAk6eTJkyouLtb06dPldDr16KOPBqVQAAAAAACam6GNxUaOHKkXX3xR8+fPr91c7Omnn5bP51NkZKReeuklDRkyJCiFAgAAAADQ3AyFaEkaN26cbr/9dhUXF+vLL7+U1+tVz549dcsttygyMjIYNQIAAAAAYApXHKKrqqq0ePFiDRs2TKNHj9Ztt90WzLoAAAAAADCdK14THR4erj/96U86efJkMOsBAAAAAMC0DG0s1q9fP33xxRfBqgUAAAAAAFMzFKKfeeYZ/fWvf9X//M//qKamJlg1AQAAAABgSoY2FpszZ44sFosyMjL0/PPPq3PnzgoLC/O7xmKxaPPmzYaKBAAAAADADAyF6KioKEVFRenaa68NVj0AAAAAAJiWoRCdl5cXrDoAAAAAADA9Q2uiAQAAAABoTQw9ib7owoULcjqdcrvd8vl8dc4PGTIkGNMAAAAAANCsDIVor9erRYsW6Y033lBVVVW91+3fv9/INAAAAAAAmIKhEL18+XKtXr1aEydO1KBBg/Rf//Vfmj17tmw2m9544w1ZLBY9/fTTwaoVAAAAAIBmZWhN9KZNm5SUlKR58+bppz/9qSSpX79+euCBB7RhwwZZLBbt2rUrKIUCAAAAANDcDIXor7/+WsOHD5ckhYaGSpKqq6trj++55x69+eabBksEAAAAAMAcDIXoqKgonTt3TpIUERGhyMhIHT161O+a8vJyI1MAAAAAAGAahtZE33DDDfr0009rj4cNG6a1a9eqb9++8vl8Wrdunfr06WO4SAAAAAAAzMDQk+gHHnhA1dXVta9wp6enq7y8XFOmTNGUKVNUUVGhOXPmBKVQAAAAAACam6En0bfeeqtuvfXW2uPrrrtOb7/9tj744AOFhIToJz/5iaKiogwXCQAAAACAGRgK0ZfSvn173XbbbcEeFgAAAACAZmfode6JEydq4cKF+vvf/x60DcRKSko0bdo0DRgwQAkJCcrOzq59XTxQubm56tOnj9LS0oJSEwAAAAAAksEn0e3bt1d+fr5WrVolq9WquLg4DR48WEOGDNGgQYPUuXPnRo3ncrmUmpqqmJgY5eTkqKysTFlZWaqqqlJGRkZAY5w4cUKvvPKKOnbseCW3BAAAAABAvQyF6FWrVsnn82n//v368MMP9dFHH2n79u1av369LBaLunXrpiFDhujFF18MaLz8/HxVVFRo2bJltWupPR6P5s2bp7S0tIBC+YIFCzR69GiVlpYauTUAAAAAAOow9Dq3JFksFt1www16+OGHtWTJEr377rt64YUX1KtXLx07dkx/+ctfAh6rsLBQ8fHxfpuRJSUlyev1qqio6LL9P/zwQ7399tv61a9+dUX3AgAAAABAQwxvLFZRUaE9e/bUPon+3//9X1VXVys2NlYTJ07U4MGDAx7L6XTqvvvu82uz2WyKjo6W0+lssK/H41FmZqYee+wxderU6YruBQAAAACAhhgK0ePHj9eBAwdksVjUp08fDRkyRKmpqRo0aJB+8IMfNHq88vJy2Wy2Ou12u10ul6vBvm+88YYqKys1derURs8LAAAAAEAgDIXozz77TFarVbfeeqtGjhypwYMHq1evXsGqLWAnT57U0qVL9dJLLyk0NPSqzw8AAAAAaB0MheiNGzfWvsb98ssv69SpU+rYsaMGDRqkwYMHa/Dgwbr++utlsVgCGs9ms8ntdtdpd7lcstvt9fZbsmSJ+vTpo8GDB9d+aqumpkY1NTUqLy9Xu3bt1KZN0D+JDQAAAABoZQwly379+qlfv35KTU2VJB0+fLg2VP/hD3/Q/PnzFRkZqd27dwc0XmxsbJ21z263WydOnFBsbGy9/Q4fPqzdu3dryJAhdc4NGTJEK1euVGJiYiPuDAAAAACAuoL2eLaqqkpff/21vv76a5WWlurUqVPy+Xw6d+5cwGMkJiZq+fLlfmujCwoKZLValZCQUG+/Z555pvYJ9EXz589XeHi4Zs2apT59+lzZTQEAAAAA8B2GQvTf//537d69Wx999JH27dunmpoahYWFqX///po6daoGDx6sn/zkJwGPl5KSory8PDkcDqWlpamsrEzZ2dlKSUnx+0Z0amqqSktLtX37dklS375964xls9nUrl07DRs2zMgtAgAAAABQy1CIfvzxx2Wz2TRw4EA99dRTGjx4sG688UZdc801VzSe3W7X2rVrlZmZKYfDoYiICE2YMEHp6el+13m9Xnk8HiOlAwAAAADQaIZC9JtvvqnevXsHvHFYIOLi4pSbm9vgNXl5eZcdJ5BrAAAAAABoDEMhmrXGAAAAAIDWpFEhetmyZY2ewGKxyOFwNLofAAAAAABmQ4gGAAAAACBAjQrRn3/+eVPVAQAAAACA6VmbuwAAAAAAAL4vCNEAAAAAAATI0O7c0reveP/xj3/UZ599JrfbLa/X63feYrHo7bffNjoNAAAAAADNztCT6A8++ED333+/3nvvPXXq1ElHjx5Vjx491KlTJ5WWlqpdu3YaMmRIsGoFAAAAAKBZGQrRS5cuVY8ePVRQUKD58+dLktLS0rR+/Xrl5+errKxMY8eODUqhAAAAAAA0N0Mh+rPPPtOECRMUGRmpkJAQSap9nfvmm2/WxIkTtWTJEuNVAgAAAABgAoZCdEhIiCIiIiRJNptNbdq00cmTJ2vP9+jRQyUlJcYqBAAAAADAJAyF6J49e+rLL7+U9O0GYrGxsX6biL333nv64Q9/aKhAAAAAAADMwlCIHjlypLZs2aKamhpJ0rRp07Rt2zbdfvvtuv322/Xuu+9q4sSJQSkUAAAAAIDmZugTV7/4xS/08MMPy2r9Novfe++9slqt2rZtm0JCQvTYY49p/PjxQSkUAAAAAIDmZihEX3PNNfrBD37g15acnKzk5GRDRQEAAAAAYEaGQrQkffjhh9q4caOOHTsml8sln8/nd95isWjz5s1GpwEAAAAAoNkZCtF/+MMflJ2drbCwMF177bWy2+3BqgsAAAAAANMxFKJXr16tgQMHavny5Wrfvn2wagIAAAAAwJQM7c5dWVmpn//85wRoAAAAAECrYChEDxs2TF988cX/x979R/dV13nifyZh2tIfn3TKhvJLqakLVhQ7/BBKsFTZKgUcFAuEH2P4sZhZ4w8KuIM7bm0XWjtFRiXFAbG1paNUZlmBAdqhnoNUWmQUZURWPdAgAtltK6VJWiktyef7h1+yxtLyyY+Sz6SPxzk9J/d97+v9ed0cPifnyb3veweqFwAAAChr/QrR//2///c88sgjWbx4cbZs2TJQPQEAAEBZ6tea6IMPPjjnnXdeFi5cmC9/+csZPnx49zujX1NRUZHHHnusX00CAABAOehXiP7a176Wm2++OePHj8+73vUua6MBAAAY0voVolesWJFTTjklX//613e5Ag0AAABDTb+S786dOzNt2jQBGgAAgH1Cv9LvtGnT8pOf/GSgegEAAICy1q8Q/alPfSrr16/PnDlz8otf/CKbN2/Oli1bdvkHAAAAQ0G/1kSfdtppSZJf/vKX+e53v7vb4375y1+WPOf69etz3XXX5Wc/+1lGjRqVs846K1dccUWGDRu225qNGzdm6dKlWbt2bX77299mzJgxOf7443PllVfm0EMPLf2EAAAAYA/6FaKbmppSUVExUL2kra0tDQ0NmTBhQpqbm7Nhw4YsWLAg27dvz+zZs3db9+STT2b16tX52Mc+lve85z156aWX8g//8A8555xzcu+992bcuHED1iMAAAD7rn6F6E9/+tMD1UeSPzzte9u2bVm0aFHGjh2bJOns7MzcuXPT2NiY8ePHv27dsccem5UrV2a//f7f6RxzzDGZNm1a7rrrrlx66aUD2icAAAD7prJ6rPaaNWsyZcqU7gCdJDNmzEhXV1fWrl2727pCodAjQCfJQQcdlHHjxmXjxo17rV8AAAD2LWUVoltaWlJbW9tjrFAopKamJi0tLb2a65lnnsmLL76YiRMnDmSLAAAA7MPKKkS3t7enUCjsMl5dXZ22traS5ykWi7nuuuty4IEH5owzzhjIFgEAANiH9WtNdLlqbm7Oj370o3zzm9/MyJEjB7sdAAAAhoiyCtGFQiEdHR27jLe1taW6urqkOe64447cdNNNmTdvXqZMmTLQLQIAALAPK6vbuWtra3dZ+9zR0ZFNmzbtslb69axevTpz5szJZz7zmcycOXNvtQkAAMA+qqxC9NSpU7Nu3bq0t7d3j61atSqVlZWpq6vbY+2jjz6aK6+8Muecc06ampr2dqsAAADsg8oqRNfX12fUqFFpamrKww8/nDvvvDMLFy5MfX19j3dENzQ0ZPr06d3b69evT1NTUyZMmJCzzjorjz/+ePe/3/72t4NxKgAAAAxBZbUmurq6OsuWLcu1116bpqamjBo1KjNnzsysWbN6HNfV1ZXOzs7u7X/7t39LR0dHOjo6cv755/c49qMf/WgWLFjwpvQPAADA0FZWITpJJk6cmKVLl+7xmOXLl/fYPvvss3P22Wfvxa4AAACgzG7nBgAAgHImRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFAiIRoAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUKL9BrsBABgqKisrUllZ0e95urqK6eoqDkBHAMBAE6IBYABUVlZk7NiRqarq/01enZ1d2bLl94I0AJQhIRoABkBlZUWqqirz5W8/luc3dPR5nsPGj8nVFx6bysoKIRoAylDZhej169fnuuuuy89+9rOMGjUqZ511Vq644ooMGzZsj3XFYjG33nprvvOd72Tz5s2ZNGlSPv/5z2fy5MlvUucAkDy/oSPrX2gb7DYAgL2krB4s1tbWloaGhuzcuTPNzc2ZNWtW7rjjjixYsOANa2+99dbceOONufjii3PLLbekpqYml156aZ577rk3oXMAAAD2BWV1JXrFihXZtm1bFi1alLFjxyZJOjs7M3fu3DQ2Nmb8+PGvW/fKK6/klltuyaWXXpqLL744SXLsscfmtNNOy+LFizNnzpw36QwAAAAYysrqSvSaNWsyZcqU7gCdJDNmzEhXV1fWrl2727qf/vSn2bp1a2bMmNE9NmzYsEyfPj1r1qzZqz0DAACw7yirEN3S0pLa2toeY4VCITU1NWlpadljXZJdaidOnJjW1tZs37594JsFAABgn1NWt3O3t7enUCjsMl5dXZ22tt0/pKW9vT3Dhg3L8OHDe4wXCoUUi8W0tbVlxIgRve6nsrIi48aN6nUd8OYo9Tt62Pgx/fqc1+oLhf37NQ/7Bv+99eRvKZQ331HovbIK0eWmoqIiVVUVg90GsBulfkevvvDYAfm8gXj/L0Of/9568rcUypvvKPReWf2FLhQK6ejY9d2abW1tqa6u3mPdjh078sorr/QYb29vT0VFxR5rAQAAoFRlFaJra2t3Wfvc0dGRTZs27bLe+U/rkuSZZ57pMd7S0pJDDjmkT7dyAwAAwJ8qqxA9derUrFu3Lu3t7d1jq1atSmVlZerq6nZbd8wxx2T06NFZuXJl99jOnTvzwAMPZOrUqXu1ZwAAAPYdZbUmur6+PsuXL09TU4/JjH4AACAASURBVFMaGxuzYcOGLFy4MPX19T3eEd3Q0JDW1tasXr06STJ8+PA0Njamubk548aNyxFHHJHbb789W7ZsyWWXXTZYpwMAAMAQU1Yhurq6OsuWLcu1116bpqamjBo1KjNnzsysWbN6HNfV1ZXOzs4eY5dffnmKxWKWLFmSzZs3Z9KkSVm8eHHe8pa3vJmnAAAAwBBWUSwWi4PdBAAAAPx7UFZrogEAAKCcCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFAiIRoAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJyi5EP/vss5k9e3bOOuusvPOd78yZZ55ZUl2xWMw3vvGNTJs2LUcffXTOO++8PP7443u5WwAAAPYlZRein3rqqTz00EM5/PDDM3HixJLrbr311tx44425+OKLc8stt6SmpiaXXnppnnvuub3YLQAAAPuSimKxWBzsJv5YV1dXKiv/kO2vueaa/OIXv8i99967x5pXXnklJ510Ui688MJceeWVSZIdO3bktNNOy9SpUzNnzpy93TYAAAD7gLK7Ev1agO6Nn/70p9m6dWtmzJjRPTZs2LBMnz49a9asGcj2AAAA2IeVXYjui5aWliRJbW1tj/GJEyemtbU127dvH4y2AAAAGGKGRIhub2/PsGHDMnz48B7jhUIhxWIxbW1tg9QZAAAAQ8l+g91AOevs7MrmzdsGuw1409XUjBnsFkriO8q+zPcUypvvKJS3/nxHh8SV6EKhkB07duSVV17pMd7e3p6KiopUV1cPUmcAAAAMJUMiRL+2FvqZZ57pMd7S0pJDDjkkI0aMGIy2AAAAGGKGRIg+5phjMnr06KxcubJ7bOfOnXnggQcyderUQewMAACAoaTs1kS//PLLeeihh5IkL7zwQrZu3ZpVq1YlSd773vdm3LhxaWhoSGtra1avXp0kGT58eBobG9Pc3Jxx48bliCOOyO23354tW7bksssuG7RzAQAAYGgpuxD94osv5rOf/WyPsde2b7vttpxwwgnp6upKZ2dnj2Muv/zyFIvFLFmyJJs3b86kSZOyePHivOUtb3nTegcAAGBoqygWi8XBbqJceVoh+ypPFIXy53sK5c13FMrbPv90bgAAAHgzCNEAAABQorJbEw0A7DsqKytSWVnR73m6uorp6rJCDYC9T4gGAAZFZWVFxo4dmaqq/t8Y19nZlS1bfi9IA7DXCdEAwKCorKxIVVVlvvztx/L8ho4+z3PY+DG5+sJjU1lZIUQDsNcJ0QDAoHp+Q0fWv9A22G0AQEk8WAwAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlKjsQvT69etzySWXZPLkyamrq8vChQuzY8eON6x76aWXMnv27EybNi2TJ0/OmWeemdtvv/1N6BgAAIB9xX6D3cAfa2trS0NDQyZMmJDm5uZs2LAhCxYsyPbt2zN79uw91n72s59NS0tLrrzyyhx88MFZs2ZN5syZk6qqqpx77rlv0hkAAAAwlJVViF6xYkW2bduWRYsWZezYsUmSzs7OzJ07N42NjRk/fvzr1m3atCmPPvpovvSlL+Xss89OkkyZMiVPPPFE7rvvPiEaAACAAVFWt3OvWbMmU6ZM6Q7QSTJjxox0dXVl7dq1u6179dVXkyRjxozpMT569OgUi8W90ywAAAD7nLIK0S0tLamtre0xVigUUlNTk5aWlt3WHXzwwTn55JNz88035+mnn87WrVtz//33Z+3atbnwwgv3dtsAAADsI8rqdu729vYUCoVdxqurq9PW1rbH2ubm5syaNStnnHFGkqSqqipf+MIX8qEPfWiv9AoAAMC+p6xCdF8Vi8V8/vOfz29+85vccMMNqampybp16zJ//vxUV1d3B2sAAADoj7IK0YVCIR0dHbuMt7W1pbq6erd1P/jBD7Jq1arcc889OfLII5MkJ5xwQl588cUsWLBAiAYAAGBAlNWa6Nra2l3WPnd0dGTTpk27rJX+Y08//XSqqqpyxBFH9BifNGlSNm7cmJdffnmv9AsAAMC+paxC9NSpU7Nu3bq0t7d3j61atSqVlZWpq6vbbd2hhx6azs7O/PrXv+4x/uSTT+aAAw7I/vvvv9d6BgAAYN9RViG6vr4+o0aNSlNTUx5++OHceeedWbhwYerr63u8I7qhoSHTp0/v3p46dWoOOeSQfOYzn8ndd9+dRx55JNdff32+973v5aKLLhqMUwEAAGAIKqs10dXV1Vm2bFmuvfbaNDU1ZdSoUZk5c2ZmzZrV47iurq50dnZ2b48ePTpLly7NV77ylXz5y19OR0dHDjvssFxzzTVCNAAAAAOmrEJ0kkycODFLly7d4zHLly/fZezwww/PV7/61b3UFQAAAJTZ7dwAAABQzoRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFCi/QZysmKxmB/96EfZsWNHjj322IwePXogpwcAAIBB1ecQ/ZWvfCU//elPs3z58iR/CNCXXnppfvSjH6VYLOaQQw7J0qVL89a3vnXAmgUAAIDB1Ofbuf/lX/4lRx99dPf2qlWr8sgjj+SKK67ILbfcks7OzjQ3Nw9IkwAAAFAO+nwlesOGDTn88MO7t1evXp23v/3taWxsTJKcf/75uf322/vfIQAAAJSJPl+J3m+//bJjx44kf7iV+5FHHsn73ve+7v0HHHBAXnrppV7Pu379+lxyySWZPHly6urqsnDhwu7PeSMbNmzI3/zN3+TEE0/M0UcfnRkzZuSee+7pdQ8AAADwevp8Jfo//sf/mHvuuScf/vCHs3r16mzZsiWnnHJK9/7W1tb8+Z//ea/mbGtrS0NDQyZMmJDm5uZs2LAhCxYsyPbt2zN79uw91m7cuDHnnXde3va2t+Xaa6/N6NGj89RTT5UcwAEAAOCN9DlENzU15a//+q9z4oknJkmOOeaY7p+T5KGHHsq73/3uXs25YsWKbNu2LYsWLcrYsWOTJJ2dnZk7d24aGxszfvz43dZef/31Oeigg/LNb34zVVVVSZIpU6b09rQAAABgt/p8O3ddXV2+973v5Zprrsn8+fOzZMmS7n1tbW057rjjctFFF/VqzjVr1mTKlCndATpJZsyYka6urqxdu3a3dVu3bs3KlStzwQUXdAdoAAAAGGh9vhLd2tqaww47LA0NDbvsq66uzqxZs3q9JrqlpSUf+9jHeowVCoXU1NSkpaVlt3VPPvlkdu7cmf322y8XXXRRfvazn2Xs2LH5yEc+kiuuuCJ/9md/1qs+AAAA4PX0+Ur0qaeemtWrV+92/4MPPphTTz21V3O2t7enUCjsMl5dXZ22trbd1v3ud79LknzhC1/Iu971rixevDgNDQ1ZtmxZbrzxxl71AAAAALvT5yvRxWJxj/t37tyZyso+Z/Re6erqSpKcdNJJueaaa5IkJ554YrZt25YlS5akqakpI0aMeFN6AQAAYOjqVYjeunVr2tvbu7e3bNmS1tbWXY5rb2/P/fffn5qaml41UygU0tHRsct4W1tbqqur91iXpMeDzZI/PFjs5ptvzrPPPpsjjzyyV70AAADAn+pViF66dGluuummJElFRUXmz5+f+fPnv+6xxWIxV1xxRa+aqa2t3WXtc0dHRzZt2pTa2trd1r397W/f47yvvPJKr/oAAACA19OrEF1XV5eRI0emWCzm+uuvzxlnnJGjjjqqxzEVFRXZf//9c9RRR/X6FVdTp07NzTff3GNt9KpVq1JZWZm6urrd1h166KE54ogjsm7duh5PBF+3bl1GjBjxhiEbAAAAStGrEP0Xf/EX+Yu/+Iskycsvv5zp06cP6G3S9fX1Wb58eZqamtLY2JgNGzZk4cKFqa+v7/GO6IaGhrS2tvZ4sNmsWbPyyU9+MvPmzcu0adPyxBNPZMmSJbnssssycuTIAesRAACAfVefHyz2qU99aiD7SPKHp3AvW7Ys1157bZqamjJq1KjMnDkzs2bN6nFcV1dXOjs7e4x94AMfyN///d/n61//em6//fYceOCB+fSnP51PfOITA94nAAAA+6aSQ/SiRYtSUVGR//Jf/ksqKyuzaNGiN6ypqKhIU1NTrxqaOHFili5dusdjli9f/rrjp59+ek4//fRefR4AAACUqtch+vLLL8+wYcP2WogGAACAclVyiP7Vr361x20AAAAY6ioHuwEAAAD496LPDxZ7ze9///v8+Mc/zgsvvJDkD6+bOv744z0RGwAAgCGnXyF6+fLl+epXv5rf//73KRaL3eOjRo3KrFmzeryzGQAAAP6963OIvuuuuzJv3rxMnjw5H//4x1NbW5skaWlpyfLlyzNv3ryMHj06H/nIRwasWQAAABhMfQ7R3/rWt3L88cdn6dKlqaqq6h5/xzvekQ996EO5+OKL861vfUuIBgAAYMjo84PFnnnmmZx22mk9AvRrqqqqctppp+WZZ57pV3MAAABQTvocoseMGZPnn39+t/uff/75jB49uq/TAwAAQNnpc4g+5ZRT8o//+I+57777dtl3//3359vf/nbe//7396s5AAAAKCd9XhN99dVX5/HHH8/VV1+dBQsWZMKECUmS3/zmN/nd736X2traXHXVVQPVJwAAAAy6PofocePG5Xvf+15WrFiRNWvWpLW1NUlyxBFH5PLLL895552X4cOHD1ijAAAAMNj69Z7o4cOHp6GhIQ0NDQPVDwAAAJStPq+JBgAAgH1NyVeiP/7xj/d68oqKiixbtqzXdQAAAFCOSg7RxWKx15P3pQYAAADKVckhevny5XuzDwAAACh71kQDAABAifr1dO4kefDBB/PQQw/lhRdeSJIceuihOeWUU/L+97+/380BAABAOelziG5vb09TU1N+8pOfpKqqKjU1NUmSRx55JN/97ndz3HHH5aabbkqhUBiwZgEAAGAw9fl27nnz5uWxxx7L1VdfnX/913/Ngw8+mAcffDD/+q//mquuuiqPPfZY5s2bN5C9AgAAwKDq85Xo73//+7ngggty2WWX9RgfOXJk/vN//s/5P//n/+Suu+7qd4MAAABQLvp8JXq//fbL2972tt3ur62tzX779XvJNQAAAJSNPofoD33oQ1m1alU6Ozt32ffqq69m5cqVOe200/rVHAAAAJSTPl8q/su//Mv8j//xP1JfX59zzz03hx9+eJLk2WefzXe/+93s3LkzH/7wh/Pkk0/2qDvqqKP61zEAAAAMkj6H6Isuuqj75yeeeCIVFRVJkmKx2D3+V3/1V90/F4vFVFRU5Je//GVfPxIAAAAGVZ9D9Pz587uDMwAAAOwL+hyizz777IHsAwAAAMpenx8stmnTpjc85uc//3mv512/fn0uueSSTJ48OXV1dVm4cGF27NjRqzmWLl2aI488Mo2Njb3+fAAAANidPofoM888M/fee+/r7tu5c2euv/76nH/++b2as62tLQ0NDdm5c2eam5sza9as3HHHHVmwYEHJc2zatCk33XRTDjjggF59NgAAALyRPt/O/a53vSuf+9zn8sADD2TOnDkZN25ckuQXv/hFrrnmmrS0tOTjH/94r+ZcsWJFtm3blkWLFmXs2LFJks7OzsydOzeNjY0ZP378G85x/fXX5wMf+EBaW1t7f1IAAACwB32+Er148eJ88YtfzMMPP5wzzzwz999/f77yla/kvPPOy44dO3Lbbbflmmuu6dWca9asyZQpU7oDdJLMmDEjXV1dWbt27RvW/+QnP8n3v//9XHXVVb0+HwAAAHgjfQ7RSVJfX5977rkn48ePz1VXXZVvfOMbmTlzZu6+++4cd9xxvZ6vpaUltbW1PcYKhUJqamrS0tKyx9rOzs5ce+21+eu//usceOCBvf5sAAAAeCP9CtHFYjH33Xdfnn766RxwwAGpqKjIz372szz77LN9mq+9vT2FQmGX8erq6rS1te2x9jvf+U5efvnlXHzxxX36bAAAAHgjfQ7RLS0tOe+88/KVr3wlZ599dh544IHcdtttefnll3POOefk61//erq6ugay19168cUXc+ONN+aaa67JsGHD3pTPBAAAYN/T5xD9kY98JBs3bszixYszd+7cjBw5Mscdd1zuueeenHPOOWlubs65557bqzkLhUI6Ojp2GW9ra0t1dfVu6772ta/lyCOPzHHHHZf29va0t7fn1Vdfzauvvtr9MwAAAPRXn5/Offrpp+dv//ZvM2bMmB7j+++/f2bPnp3p06fnb//2b3s1Z21t7S5rnzs6OrJp06Zd1kr/sWeeeSY//vGPc/zxx++y7/jjj8+tt96aqVOn9qoXAAAA+FN9DtGvvbt5x44defLJJ/Piiy/mmGOO6X7V1ZQpU/LP//zPvZpz6tSpufnmm3usjV61alUqKytTV1e327r/9t/+W9rb23uMzZ8/PyNGjMiVV16ZI488sld9AAAAwOvpc4hOkttuuy2LFi3qvgV7yZIlmTJlSjZv3pwZM2bkc5/7XGbOnFnyfPX19Vm+fHmamprS2NiYDRs2ZOHChamvr+/xjuiGhoa0trZm9erVSZJJkybtMlehUMjIkSNzwgkn9OcUAQAAoFuf10TfeeedmT9/ft73vvdl3rx5KRaL3fvGjRuXE088Mffff3+v5qyurs6yZctSVVWVpqam3HDDDZk5c+Yu75vu6upKZ2dnX1sHAACAPunzlehvfetbOfXUU3PDDTfkpZde2mX/UUcdleXLl/d63okTJ2bp0qV7PKaUefvy2QAAALAnfb4S/eyzz+7xYV1jx47Nli1b+jo9AAAAlJ0+h+hCofC6V6Bf8/TTT6empqav0wMAAEDZ6XOInjp1au64445dnoqdJE899VT+6Z/+KR/4wAf61RwAAACUkz6vib7iiity7rnn5swzz8z73//+VFRU5K677sqdd96ZBx54IDU1NfnkJz85kL0CAADAoOrzlejx48fnf/2v/5X3ve99WblyZYrFYu6+++48+OCDOeOMM3LHHXd0vzMaAAAAhoJ+vSf6gAMOyLx58zJv3rxs3rw5XV1dGTduXCor+5zNAQAAoGz1K0T/MVedAQAAGOpcMgYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFAiIRoAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJ9hvsBv7U+vXrc9111+VnP/tZRo0albPOOitXXHFFhg0bttuajRs3ZunSpVm7dm1++9vfZsyYMTn++ONz5ZVX5tBDD30TuwcAAGAoK6sQ3dbWloaGhkyYMCHNzc3ZsGFDFixYkO3bt2f27Nm7rXvyySezevXqfOxjH8t73vOevPTSS/mHf/iHnHPOObn33nszbty4N/EsAAAAGKrKKkSvWLEi27Zty6JFizJ27NgkSWdnZ+bOnZvGxsaMHz/+deuOPfbYrFy5Mvvt9/9O55hjjsm0adNy11135dJLL31T+gcAAGBoK6s10WvWrMmUKVO6A3SSzJgxI11dXVm7du1u6wqFQo8AnSQHHXRQxo0bl40bN+61fgEAANi3lFWIbmlpSW1tbY+xQqGQmpqatLS09GquZ555Ji+++GImTpw4kC0CAACwDyurEN3e3p5CobDLeHV1ddra2kqep1gs5rrrrsuBBx6YM844YyBbBAAAYB9WVmuiB0pzc3N+9KMf5Zvf/GZGjhw52O0AAAAwRJRViC4UCuno6NhlvK2tLdXV1SXNcccdd+Smm27KvHnzMmXKlIFuEQAAgH1YWd3OXVtbu8va546OjmzatGmXtdKvZ/Xq1ZkzZ04+85nPZObMmXurTQAAAPZRZRWip06dmnXr1qW9vb17bNWqVamsrExdXd0eax999NFceeWVOeecc9LU1LS3WwUAAGAfVFYhur6+PqNGjUpTU1Mefvjh3HnnnVm4cGHq6+t7vCO6oaEh06dP795ev359mpqaMmHChJx11ll5/PHHu//99re/HYxTAQAAYAgqqzXR1dXVWbZsWa699to0NTVl1KhRmTlzZmbNmtXjuK6urnR2dnZv/9u//Vs6OjrS0dGR888/v8exH/3oR7NgwYI3pX8AAACGtrIK0UkyceLELF26dI/HLF++vMf22WefnbPPPnsvdgUAAABldjs3AAAAlDMhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASrTfYDcAAFAOKisrUllZMdhtJEm6uorp6ioOdhsAvA4hGgDY51VWVmTs2JGpqurfTXqdXcVUDUAQ7+zsypYtvxekAcqQEA0A7PMqKytSVVWZL3/7sTy/oaNPcxzzjgPz8dPf2a85kuSw8WNy9YXHprKyQogGKENCNADA/+/5DR1Z/0Jbn2oPO3B0v+cAoPx5sBgAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJfKeaABgSKiq6vu1gf7U7i3l0lNXVzFdXcXBbmPAVFZWpLKyol9zDLXfCdA7QjQA8O/a2DHD09VVTKGw/2C3MiAG6nw6u4qp6mdYTJLOzq5s2fL7IREaKysrMnbsyH7/D4qh9DsBek+IBgD+XRu9/5+lsrIiX/72Y3l+Q0ef5jjmHQfm46e/c4A765uBPJ/+zJEkh40fk6svPDaVlRVDIjBWVlakqqqyX7+XofY7AXpPiAYAhoTnN3Rk/Qttfao97MDRA9xN/w3E+fRnjqHM7wXoj/JYbAMAAAD/DgjRAAAAUKKyC9Hr16/PJZdcksmTJ6euri4LFy7Mjh073rCuWCzmG9/4RqZNm5ajjz465513Xh5//PE3oWMAAAD2FWUVotva2tLQ0JCdO3emubk5s2bNyh133JEFCxa8Ye2tt96aG2+8MRdffHFuueWW1NTU5NJLL81zzz33JnQOAADAvqCsHiy2YsWKbNu2LYsWLcrYsWOTJJ2dnZk7d24aGxszfvz416175ZVXcsstt+TSSy/NxRdfnCQ59thjc9ppp2Xx4sWZM2fOm3QGAAAADGVldSV6zZo1mTJlSneATpIZM2akq6sra9eu3W3dT3/602zdujUzZszoHhs2bFimT5+eNWvW7NWeAQAA2HeUVYhuaWlJbW1tj7FCoZCampq0tLTssS7JLrUTJ05Ma2trtm/fPvDNAgAAsM8pq9u529vbUygUdhmvrq5OW9vu3+XX3t6eYcOGZfjw4T3GC4VCisVi2traMmLEiF73U1lZkXHjRvW6Dnhz+I5C+Svle3rY+DH9+owDx43s9zzlMke59fJafaGwf7/mKTf9+b0Mtd+Jv6XQe2UVostNRUVFqqoqBrsNYDd8R6H8lfI9vfrCYwfkswZinnKZY6DmGaheqqrK6ubFfhuI38tQ+Z34Wwq9V1bf/kKhkI6Ojl3G29raUl1dvce6HTt25JVXXukx3t7enoqKij3WAgAAQKnKKkTX1tbusva5o6MjmzZt2mW985/WJckzzzzTY7ylpSWHHHJIn27lBgAAgD9VViF66tSpWbduXdrb27vHVq1alcrKytTV1e227phjjsno0aOzcuXK7rGdO3fmgQceyNSpU/dqzwAAAOw7ympNdH19fZYvX56mpqY0NjZmw4YNWbhwYerr63u8I7qhoSGtra1ZvXp1kmT48OFpbGxMc3Nzxo0blyOOOCK33357tmzZkssuu2ywTgcAAIAhpqxCdHV1dZYtW5Zrr702TU1NGTVqVGbOnJlZs2b1OK6rqyudnZ09xi6//PIUi8UsWbIkmzdvzqRJk7J48eK85S1veTNPAQAAgCGsolgsFge7CQAAAPj3oKzWRAMAAEA5E6IBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFAiIRoAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASlV2IfvbZZzN79uycddZZeec735kzzzyzpLpisZhvfOMbmTZtWo4++uicd955efzxx/dytwAAAOxLyi5EP/XUU3nooYdy+OGHZ+LEiSXX3Xrrrbnxxhtz8cUX55ZbbklNTU0uvfTSPPfcc3uxWwAAAPYlFcVisTjYTfyxrq6uVFb+Idtfc801+cUvfpF77713jzWvvPJKTjrppFx44YW58sorkyQ7duzIaaedlqlTp2bOnDl7u20AAAD2AWV3Jfq1AN0bP/3pT7N169bMmDGje2zYsGGZPn161qxZM5DtAQAAsA8ruxDdFy0tLUmS2traHuMTJ05Ma2trtm/fPhhtAQAAMMQMiRDd3t6eYcOGZfjw4T3GC4VCisVi2traBqkzAAAAhpL9BruBctbZ2ZXNm7cNdhvwpqupGTPYLZTEd5R9me8plDffUShv/fmODokr0YVCITt27Mgrr7zSY7y9vT0V5T2CSwAAIABJREFUFRWprq4epM4AAAAYSoZEiH5tLfQzzzzTY7ylpSWHHHJIRowYMRhtAQAAMMQMiRB9zDHHZPTo0Vm5cmX32M6dO/PAAw9k6tSpg9gZAAAAQ0nZrYl++eWX89BDDyVJXnjhhWzdujWrVq1Kkrz3ve/NuHHj0tDQkNbW1qxevTpJMnz48DQ2Nqa5uTnjxo3LEUcckdtvvz1btmzJZZddNmjnAgAAwNBSdiH6xRdfzGc/+9keY69t33bbbTnhhBPS1dWVzs7OHsdcfvnlKRaLWbJkSTZv3pxJkyZl8eLFectb3vKm9Q4AAMDQVlEsFouD3US58rRC9lWeKArlz/cUypvvKJS3ff7p3AAAAPBmEKIBAACgRGW3JhoAACgflZUVqays6NccXV3FdHVZRcrQIEQDAACvq7KyImPHjkxVVf9uYO3s7MqWLb8XpBkShGgAAOB1VVZWpKqqMl/+9mN5fkNHn+Y4bPyYXH3hsamsrBCiGRKEaAAAYI+e39CR9S+0DXYbUBY8WAwAAABKJEQDAABAiYRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlKjsQvT69etzySWXZPLkyamrq8vChQuzY8eON6x76aWXMnv27EybNi2TJ0/OmWeemdtvv/1N6BgAAIB9xX6D3cAfa2trS0NDQyZMmJDm5uZs2LAhCxYsyPbt2zN79uw91n72s59NS0tLrrzyyhx88MFZs2ZN5syZk6qqqpx77rlv0hkAAAAwlJVViF6xYkW2bduWRYsWZezYsUmSzs7OzJ07N42NjRk/fvzr1m3atCmPPvpovvSlL+Xss89OkkyZMiVPPPFE7rvvPiEaAACAAVFWt3OvWbMmU6ZM6Q7QSTJjxox0dXVl7dq1u6179dVXkyRjxozpMT569OgUi8W90ywAAAD7nLIK0S0tLamtre0xVigUUlNTk5aWlt3WHXzwwTn55JNz88035+mnn87WrVtz//33Z+3atbnwwgv3dtsAAADsI8rqdu729vYUCoVdxqurq9PW1rbH2ubm5syaNStnnHFGkqSqqipf+MIX8qEPfWiv9AoAAMC+p6xCdF8Vi8V8/vOfz29+85vccMMNqampybp16zJ//vxUV1d3B2sAAADoj7IK0YVCIR0dHbuMt7W1pbq6erd1P/jBD7Jq1arcc889OfLII5MkJ5xwQl588cUsWLBAiAYAAGBAlNWa6Nra2l3WPnd0dGTTpk27rJX+Y08//XSqqqpyxBFH9BifNGlSNm7cmJdffnmv9AsAAMC+paxC9NSpU7Nu3bq0t7d3j61atSqVlZWpq6vbbd2hhx6azs7O/PrXv+4x/uSTT+aAAw7I/vvvv9d6BgAAYN9RViG6vr4+o0aNSlNTUx5++OHceeedWbhwYerr63u8I7qhoSHTp0/v3p46dWoOOeSQfOYzn8ndd9+dRx55JNdff32+973v5aKLLhqMUwEAAGAIKqs10dXV1Vm2bFmuvfbaNDU1ZdSoUZk5c2ZmzZrV47iurq50dnZ2b48ePTpLly7NV77ylXz5y19OR0dHDjvssFxzzTVCNAAAAAOmrEJ0kkycODFLly7d4zHLly/fZezwww/PV7/61b3UFQAAAJTZ7dwAAABQzoRoAAAAKJEQDQAAACUSogEAAKBEQjQAAACUSIgGAACAEgnRAAAAUCIhGgAAAEokRAMAAECJhGgAAAAokRANAAAAJRKiAQAAoERCNAAAAJRIiAYAAIASCdEAAABQIiEaAAAASiREAwAAQImEaAAAACiREA0AAAAlEqIBAACgREI0AAAAlEiIBgAAgBIJ0QAAAFAiIRoAAABKJEQDAABAiYRoAAAAKJEQDQAAACUquxC9fv36XHLJJZk8eXLq6uqycOHC7Nixo6TaDRs25G/+5m9y4okn5uijj86MGTNyzz337OWOAQAA2FfsN9gN/LG2trY0NDRkwoQJaW5uzoYNG7JgwYJs3749s2fP3mPtxo0bc9555+Vtb3tbrr322owePTpPPfVUyQEcAAAA3siAh+jnnnsuO3bsyMSJE3tdu2LFimzbti2LFi3K2LFjkySdnZ2ZO3duGhsbM378+N3WXn/99TnooIPyzW9+M1VVVUmSKVOm9O0kAAAA4HX0+Xbu2267LbNmzeox9vnPfz4f/OAHc+aZZ+bss8/Oiy++2Ks516xZkylTpnQH6CSZMWNGurq6snbt2t3Wbd26NStXrswFF1zQHaABAABgoPU5RP/TP/1TDjjggO7tH/7wh/ne976Xc889N1/4whfy/PPPZ9GiRb2as6WlJbW1tT3GCoVCampq0tLSstu6J598Mjt37sx+++2Xiy66KEcddVTq6upy/fXXZ+fOnb07MQAAANiNPt/O3dra2uOW7ZUrV+awww7L3LlzkyS/+93vcvfdd/dqzvb29hQKhV3Gq6ur09bWttu63/3ud0mSL3zhCzn33HPzqU99Kj//+c9z4403prKyMldddVWv+gAAAIDX0+cQXSwWe2yvXbs2p556avf2oYce2h1u97aurq4kyUknnZRrrrkmSXLiiSdm27ZtWbJkSZqamjJixIg3pRcAAACGrj7fzj1hwoR8//vfT/KHW7k3btyYqVOndu//v//3/77uVeU9KRQK6ejo2GW8ra0t1dXVe6xL/hCc/9iUKVOyY8eOPPvss73qAwAAAF5Pn69EX3bZZbnqqqty/PHH5+WXX87EiRNz8sknd+9/9NFH8453vKNXc9bW1u6y9rmjoyObNm3aZa30H3v729++x3lfeeWVXvUBAAAAr6fPIfqMM87I2LFj89BDD6VQKOSCCy7Ifvv9YbotW7akuro6f/mXf9mrOadOnZqbb765x9roVatWpbKyMnV1dbutO/TQQ3PEEUdk3bp1ueiii7rH161blxEjRrxhyAYAAIBS9Os90XV1da8bbseOHdvrJ3MnSX19fZYvX56mpqY0NjZmw4YNWbhwYerr63u8I7qhoSGtra1ZvXp199isWbPyyU9+MvPmzcu0adPyxBNPZMmSJbnssssycuTIvp0gAAAA/JE+r4meNGlS/vmf/3m3+++///5MmjSpV3NWV1dn2bJlqaqqSlNTU2644YbMnDmz+2Fhr+nq6kpnZ2ePsQ984AP5+7//+zzyyCNpbGzMHXfckU9/+tO54ooretUDAAAA7M6APZ37T3V2dqaioqLX806cODFLly7d4zHLly9/3fHTTz89p59+eq8/EwAAAErR5yvRSXYbkrdu3ZqHH344f/7nf96f6QEAAKCs9OpK9KJFi3LTTTcl+UOA/tznPpfPfe5zr3tssVjMX/3VX/W/QwAAACgTvQrR7373u3PBBRekWCzmO9/5Turq6jJhwoQex1RUVGT//ffPUUcdlQ9+8IMD2SsAAAAMql6F6FNOOSWnnHJKkuTll19OfX193vOe9+yVxgAAAKDc9PnBYl/60pcGsg8AAAAoe/16sFhra2tmz56dD33oQzn++OPz4x//OEmyefPmXHfddfnf//t/D0iTAAAAUA76HKKffvrpfPSjH83KlStz2GGHZevWrXn11VeTJOPGjctjjz2Wf/zHfxywRgEAAGCw9fl27uuvvz5jxozJHXfckSQ56aSTeuw/5ZRTsnLlyv51BwAAAGWkz1eif/zjH+f888/PuHHjXvd90Yccckg2bNjQr+YAAACgnPQ5RBeLxYwYMWK3+zdv3pxhw4b1dXoAAAAoO30O0e985zvz0EMPve6+V199Nffdd5/XXwEAADCk9DlEf+ITn8gPf/jDfPGLX8xTTz2VJHnxxRezbt26XHrppWlpacknPvGJAWsUAAAABlufHyx2yimn5Etf+lLmz5/f/XCxz33ucykWixk9enT+7u/+Lscff/yANQoAAACDrc8hOkk+8pGP5IMf/GDWrVuX3/zmN+nq6spb3/rWnHzyyRk9evRA9QgAAABloV8hOklGjhyZ//Sf/tNA9AIAAABlrc8hurW1Na2trTnuuOO6x371q19lyZIl2bFjR84880zhGgAAgCGlzyH6uuuuy+9///ssXbo0SfK73/0uH//4x7Nz586MGjUq//Iv/5Kvfe1r+eAHPzhQvQIAAMCg6vPTuX/+85/npJNO6t6+6667sn379tx9991Zs2ZNpkyZkiVLlgxIkwAAAFAO+hyi29racsABB3Rv/+AHP8jxxx+ft771ramsrMz06dPT0tIyIE0CAABAOehziB43blxaW1uTJO3t7Xn88cfzvve9r3t/Z2dnXn311f53CAAAAGWiz2uiTzrppCxfvjyjR4/Oo48+mmKxmFNPPbV7/9NPP52DDz54QJoEAACActDnEH3VVVflmWeeyd/93d/lz/7sz/Jf/+t/zVve8pYkyY4dO7Jy5cp8+MMfHrBGAQAAYLD1OUT/h//wH7JixYp0dHRk+PDhGTZsWPe+rq6uLFu2LAcddNCANAkAAADloM8h+jVjxozZZWzEiBF5xzve0d+pAQAAoKz0+cFijzzySL75zW/2GPuf//N/Ztq0aTnppJMyf/78dHZ29rtBAAAAKBd9DtHNzc351a9+1b3961//Ol/84hczbty4vPe9783y5cuzePHiAWkSAAAAykGfQ/T69evzrne9q3v77rvvzujRo/Ptb387X/3qV3POOefk7rvvHpAmAQAAoBz0OUS//PLLGT16dPf2D3/4w5x88snZf//9kyTvfve7u98j3Rvr16/PJZdcksmTJ6euri4LFy7Mjh07ejXH0qVLc+SRR6axsbHXnw8AAAC70+cQffDBB+eJJ55Ikjz77LN56qmncvLJJ3fvb2tr6/HE7lK0tbWloaEhO3fuTHNzc2bNmpU77rgjCxYsKHmOTZs25aabbsoBBxzQq88GAACAN9Lnp3N/+MMfzk033fT/tXffcU2d7f/APwQFRQyIj6KitoJNRBGZKmKp4iqFqnUPcM+iPtX6raB11dYq1UcraMVteRRXHW1ddbRSUdyj2vqtAm7FCQnKkty/P/rjfA1hhCUhfN6vFy/Nnfvcuc7JuXLOlTOCpKQk3LhxA1ZWVujUqZP0/NWrV/H2228XacwtW7bgxYsXiIiIgLW1NQAgOzsbc+fOxdixY2Fra1voGN988w18fX2LdRSciIiIiIiIqCDFPhI9btw4jBkzBg8fPkT9+vWxfPlyyOVyAEBycjJOnz4NX1/fIo0ZExMDLy8vqYAGAD8/P2g0GsTGxhY6/dmzZ3H48GF8+umnRZsZIiIiIiIiIj0U+0h0lSpVMHnyZEyePFnnOWtra72K3twSEhLQu3dvrTa5XI46deogISGhwGmzs7Mxb948jBs3DnXr1i3yaxMREREREREVpthHosuCSqWSjma/zsrKCikpKQVOu3nzZqSlpWHYsGFlFB0RERERERFVdsU+Eg0AGRkZOHjwIP7880+o1WpoNBqt501MTDB//vwSBaiPp0+fYtmyZVi4cGGRb2ZGREREREREpK9iF9H37t3DkCFDcO/ePcjlcqjValhZWUGtViM7Oxu1atWChYVFkcbMGSe3lJQUWFlZ5Tvdt99+C6VSCQ8PD6hUKgDAq1ev8OrVK6hUKlhYWKBKlRJ9X0BERERERERU/CI6LCwMqamp2LZtGxo2bIh27dphyZIlcHd3x/fff49NmzZh7dq1RRrT3t5e59pntVqNx48fw97ePt/pEhMTcebMGXh6euo85+npidWrV8PHx6dIsRARERERERHlVuwiOi4uDgMHDoSzszOSk5OldjMzM4waNQrx8fGYP38+Vq1apfeYPj4+WLlypda10QcOHIBMJoO3t3e+002fPl06Ap1j/vz5qFatGqZMmQKlUlnEuSMiIiIiIiLSVewiOj09HXZ2dgAAS0tLmJiYaJ2K7erqioULFxZpzAEDBiAqKgrBwcEYO3YskpKSEBYWhgEDBmj9RvTQoUNx//59HDp0CADg6OioM5ZcLoeFhQXatGlTnNkjIiIiIiIi0lHsu3PXr18fSUlJAP75uStbW1tcvHhRev7GjRswNzcv0phWVlbYuHEjTE1NERwcjMWLF6NPnz4ICQnR6qfRaJCdnV3c0ImIiIiIiIiKpdhHotu2bYsjR45gwoQJAICPPvoIq1atgkqlgkajwY8//ogePXoUeVwHBwds2LChwD5RUVGFjqNPHyIiIiIiIqKiKHYRPWbMGPzxxx/IzMyEmZkZxo0bh0ePHuHgwYOQyWQICAhAaGhoacZKREREREREVK6KXUQ3aNAADRo0kB6bm5vjq6++wldffVUqgREREREREREZmmJfE01ERERERERU2bCIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItITi2giIiIiIiIiPbGIJiIiIiIiItJTlfIOILf4+Hh8+eWXuHDhAmrUqIEePXrgk08+gZmZWb7TPHr0CBs2bEBsbCxu376NmjVrwtPTE1OmTIGdnd0bjJ6IiIiIiPJialqy43cajYBGI0opGqLiM6giOiUlBUOHDsXbb7+N8PBwJCUlYcGCBUhPT8esWbPyne7q1as4dOgQevfujVatWuH58+f47rvv0LdvX/z888+wsbF5g3NBREREREQ5rGuaQ6MRkMurl2ic7GwNkpNfspCmcmdQRfSWLVvw4sULREREwNraGgCQnZ2NuXPnYuzYsbC1tc1zOnd3d+zfvx9Vqvzf7Li5uaFDhw7YvXs3RowY8UbiJyIiIiIibZbVq0ImM8GiTedwN0ldrDEa2tbE1MHukMlMWERTuTOoIjomJgZeXl5SAQ0Afn5+mD17NmJjY9GrV688p5PL5Tpt9erVg42NDR49elRm8RIRERERkX7uJqkRfy+lvMMgKjGDurFYQkIC7O3ttdrkcjnq1KmDhISEIo2VmJiIp0+fwsHBoTRDJCIiIiIiokrMoIpolUqV51FlKysrpKTo/62VEAJffvkl6tatC39//9IMkYiIiIiIiCoxgzqdu7SEh4cjLi4Oa9asgYWFRXmHQ0REREREREbCoIpouVwOtVr3ZgMpKSmwsrLSa4xt27Zh+fLl+Oqrr+Dl5VXaIRIREREREVElZlCnc9vb2+tc+6xWq/H48WOda6XzcujQIcyZMweTJk1Cnz59yipMIiIiIiIiqqQMqoj28fHBiRMnoFKppLYDBw5AJpPB29u7wGlPnTqFKVOmoG/fvggODi7rUImIiIiIiKgSMqgiesCAAahRowaCg4Nx/Phx/PDDDwgLC8OAAQO0fiN66NCh6NKli/Q4Pj4ewcHBePvtt9GjRw9cvHhR+rt9+3Z5zAoREREREREZIYO6JtrKygobN27EvHnzEBwcjBo1aqBPnz6YPHmyVj+NRoPs7Gzp8aVLl6BWq6FWqzFw4ECtvh999BEWLFjwRuInIiIiIiIi42ZQRTQAODg4YMOGDQX2iYqK0nrcq1cv9OrVqwyjIiIiIiIiIjKw07mJiIiIiIiIDBmLaCIiIiIiIiI9sYgmIiIiIiIi0hOLaCIiIiIiIiI9sYgmIiIiIiIi0hOLaCIiIiIiIiI9sYgmIiIiIiIi0hOLaCIiIiIiIiI9sYgmIiIiIiIi0lOV8g6AiIiIiIiICABkMhPIZCYlGkOjEdBoRClFpItFNBEREREREZU7mcwE1tYWMDUt2QnT2dkaJCe/LLNCmkU0ERERERERlTuZzASmpjIs2nQOd5PUxRqjoW1NTB3sDpnMhEU0ERERERERGb+7SWrE30sp7zDyxRuLEREREREREemJRTQRERERERGRnlhEExEREREREemJRTQRERERERGRnlhEExEREREREemJRTQRERERERGRnlhEExEREREREemJRTQRERERERGRnqqUdwBERERERET6MDUt+TFAjUZAoxGlEI1hkMlMIJOZlGgMY1smZY1FNBERERERGTTrmubQaATk8uolHis7W4Pk5JdGUTTKZCawtrYo8ZcLxrRM3gQW0UREREREZNAsq1eFTGaCRZvO4W6SutjjNLStiamD3SGTmRhFwSiTmcDUVFai5WJsy+RNYBFNREREREQVwt0kNeLvpZR3GAaHy+XN4o3FiIiIiIiIiPTEIpqIiIiIiIhITwZXRMfHx2P48OFwcXGBt7c3wsLCkJmZWeh0QgisWrUKHTp0gLOzM/r374+LFy++gYiJiIiIiIiosjCoIjolJQVDhw5FVlYWwsPDMXnyZGzbtg0LFiwodNrVq1dj2bJlGDZsGCIjI1GnTh2MGDECd+7ceQORExERERERUWVgUDcW27JlC168eIGIiAhYW1sDALKzszF37lyMHTsWtra2eU6XkZGByMhIjBgxAsOGDQMAuLu74/3338fatWsxZ86cNzQHREREREREZMwM6kh0TEwMvLy8pAIaAPz8/KDRaBAbG5vvdOfPn0dqair8/PykNjMzM3Tp0gUxMTFlGjMRERERERFVHgZVRCckJMDe3l6rTS6Xo06dOkhISChwOgA60zo4OOD+/ftIT08v/WCJiIiIiIio0jGo07lVKhXkcrlOu5WVFVJS8v/dM5VKBTMzM5ibm2u1y+VyCCGQkpKCatWqFTkemcwENjY1ijwdEb0ZzFEiw8c8JTJs+uZoQ9uaxX6NujYWBjHG69PL5dVLNI6hKclyMcRlYujzY1BFtKExMTGBqalJeYdBRPlgjhIZPuYpkWHTN0enDnYv8WsZyhgAYGpqUCfkllhpLBdDWiaGPj+Gs6Twz5FjtVqt056SkgIrK6sCp8vMzERGRoZWu0qlgomJSYHTEhEREREREenLoIpoe3t7nWuf1Wo1Hj9+rHO9c+7pACAxMVGrPSEhAQ0aNCjWqdxEREREREREuRlUEe3j44MTJ05ApVJJbQcOHIBMJoO3t3e+07m5ucHS0hL79++X2rKysvDLL7/Ax8enTGMmIiIiIiKiysOgrokeMGAAoqKiEBwcjLFjxyIpKQlhYWEYMGCA1m9EDx06FPfv38ehQ4cAAObm5hg7dizCw8NhY2MDhUKB6OhoJCcnY+TIkeU1O0RERERERGRkDKqItrKywsaNGzFv3jwEBwejRo0a6NOnDyZPnqzVT6PRIDs7W6tt9OjREEJg3bp1ePbsGRwdHbF27Vo0atToTc4CERERERERGTETIYQo7yCIiIiIiIiIKgKDuiaaiIiIiIiIyJCxiCYiIiIiIiLSE4toIiIiIiIiIj2xiCYiIiIiIiLSE4toIiIiIiIiIj2xiCYiIiIiIiLSE4voPMTHx2P48OFwcXGBt7c3wsLCkJmZWa4x3bp1C7NmzUKPHj3QvHlzBAQE5Nlv+/bt6NatG1q2bInu3bvj119/1emjVqsxffp0tG7dGq6urpg0aRIePXqk0+/8+fPo378/nJ2d0bFjR6xatQq5fxFNCIFVq1ahQ4cOcHZ2Rv/+/XHx4kWdsZKSkjBx4kS4urqidevWmDFjBlJTUwuc5/3792P8+PHw8fGBi4sLevTogR07dujEYEzzDADHjh1DYGAg2rZtCycnJ3Tq1Alff/011Gq1Vr+jR4+ie/fuaNmyJbp164YffvhBZ6zMzEwsXLgQ3t7ecHFxwfDhw5GQkKDTT991vjSXdVkyxBwuitLMd0NQmrlsKEozTyurip6nOfRZv4OCgqBUKnX+4uPjyzFy/e3cuTPP+BctWqTVryLl8Ovye3+USiX27t1bYJ+K8h7mx1jyMC/lsR9p6F68eAEfHx8olUr88ccfWs9VpuVQKgRpSU5OFt7e3mLw4MEiJiZGbN++Xbi7u4u5c+eWa1yHDh0SPj4+YuLEiSIgIED4+/vr9Pn555+FUqkUS5YsESdPnhQzZ84UzZs3FxcuXNDqN2LECOHj4yP27t0rDh8+LAICAkT37t1FVlaW1OfmzZvCxcVFBAcHixMnToj169eLFi1aiDVr1miNFRkZKVq0aCHWr18vTpw4IYKDg4Wrq6u4ffu21CczM1MEBASIgIAAceTIEbF3717h4+MjxowZU+A89+vXT0yePFns3btXnDhxQixatEg0a9ZMhIeHG+08CyHE7t27xcKFC8WBAwdEXFyciIqKEq1btxbDhw+X+pw5c0Y4OjqKmTNnipMnT4olS5YIpVIp9u/frzXWzJkzhbu7u9i+fbuIiYkRgwYNEu+++65QqVRSH33X+dJc1mXJUHO4KEoz3w1BaeayoSjNPK2MjCFPc+izfgcGBooBAwaICxcuaP2lp6eXY+T6++GHH4RCoRAxMTFa8d+/f1/qU9Fy+HXXr1/XeW8++eQT0bx5c/H06VMhRMV/D/NiTHmYlze9H1kRhIWFiXbt2gmFQiEuX74stVe25VAaWETnsnLlSuHi4iKeP38utW3ZskU4OjqKhw8flltc2dnZ0v+nTZuW5051165dxZQpU7Ta+vfvL0aNGiU9Pn/+vFAoFOL333+X2uLj44VSqRR79+6V2mbOnCk6duwoMjIypLbFixcLDw8PqS09PV24ubmJxYsXS30yMjJEx44dxezZs6W2n376SSiVShEfHy/AeHYSAAAgAElEQVS1/f7770KhUIhLly7lO885G67Xff7558LNzU1aHsY2z/nZunWrUCgU0jo4YsQI0b9/f60+U6ZMEX5+ftLjBw8eCEdHR7Flyxap7fnz58LFxUWsWrVKatN3nS/NZV2WDDWHi6K08t1QlFYuG7ri5GllZQx5mkOf9TswMFCvL1ENVU4Rnde85jCGHH6dr6+vGD16tPS4or+HeTGmPMzLm96PNHQ3btwQLi4uIjo6WqeIrkzLobTwdO5cYmJi4OXlBWtra6nNz88PGo0GsbGx5RaXTFbwW3Xnzh3cvHkTfn5+Wu0ffPABTp48KZ2aExMTA7lcDm9vb6mPvb09HB0dERMTI7XFxMSgU6dOMDMz0xpLpVLhwoULAP459Tk1NVXrNc3MzNClSxedsZRKJezt7aU2b29vWFtb49ixY/nOk42NjU6bo6MjUlNT8fLlS6Oc5/zkrI9ZWVnIzMzEqVOn8P777+vMd3x8PO7evQsAOH78ODQajVY/a2treHt768Ra2Dpf2su6LBlqDhdFaeW7oSitXDZ0xcnTysoY8jRHYet3ZWAsOZzj/PnzuHv3Lj788MPyDqVMGVMe5uVN70caui+//BIDBgxAkyZNtNor23IoLSyic0lISNAqfABALpejTp06eV5LaihyYsudGA4ODsjKysKdO3ekfk2aNIGJiYlWP3t7e2mMly9f4sGDBzrLwd7eHiYmJlK/nH9z93NwcMD9+/eRnp4u9cvdx8TEBE2aNCnyMj137hxsbW1haWlp9POcnZ2NjIwMXL16FcuXL4evry8aNmyI27dvIysrK88YXo8xISEBtWvXhpWVlU6/12PQZ50vzWVd1ipqDheFvu+HIStOLhuikuZpZWXsefr6+p3j9OnTcHFxQcuWLREYGIgzZ86UY4TFExAQAEdHR3Tq1AmRkZHIzs4GYByfSa/7+eefYWFhgU6dOmm1G8N7+Dpjz8O8lNV+pKE7cOAA/v77bwQHB+s8V5mWQ2mqUt4BGBqVSgW5XK7TbmVlhZSUlHKISD85seWOPedxzvMqlQo1a9bUmd7KygpXrlwBAOnGOLnHMjMzQ/Xq1bXGMjMzg7m5uc5rCiGQkpKCatWqFfiaRVmmZ8+exb59+zBt2rRKMc8dO3ZEUlISAODdd9/F4sWLS2W+5XK5Vgz6rPOluazLWkXN4aLQ9/0wVMXNZUNU0jytrIw5T3Ov3wDg6emJHj164O2338ajR4+wdu1aDB8+HFFRUXB1dS3HaPVTp04dTJw4Ea1atYKJiQmOHj2KpUuXIikpCbNmzTKq9f3Vq1fYv38/fH19YWFhIbVX9PcwL8ach3kpy/1IQ5aWloYFCxZg8uTJWl/s5agsy6G0sYimCuHhw4eYPHky2rRpgyFDhpR3OG/EqlWrkJaWhhs3buC7777DuHHjsH79+vIOi6hEjC2Xmaf0uvzW70mTJmn169ChAwICArBixQqsXr36TYdZZO+++y7effdd6XH79u1hbm6OjRs3Yty4ceUYWemLjY3Fs2fPdH4VoaK/h5WdsW17iuK7775D7dq10bt37/IOxajwdO5c5HK5zk+UAP98C5P7tFhDkhNb7thVKpXW83K5PM+fWXp9/nK+Zco9VmZmJtLS0rTGyszMREZGhs5rmpiYFOk1C6JSqTB69GhYW1sjPDxcul7UmOcZAJo1awZXV1f07dsXK1aswKlTp3Do0KESz7dKpdKKQZ91vjSXdVmrqDlcFPq+H4ampLlsiEqap5WVMeZpfut3XiwsLPDee+/h6tWrbzDC0uXn54fs7Gz89ddfRrW+//zzz7C2tkb79u0L7GcM76Ex5mFe3sR+pKG6d+8e1q1bh0mTJkGtVkOlUkn3anj58iVevHhRKZZDWWARnUte5/Wr1Wo8fvxY57oRQ5ITW+7YExISULVqVTRq1Ejql5iYqPMbeYmJidIYFhYWqF+/vs5YOdPl9Mv5NzExUec1GzRogGrVqkn9co8lhNB6zfykp6dj7NixUKvVWLNmjdZpJMY6z3lRKpWoWrUqbt++jcaNG6Nq1ap5zvfrMdrb2+PJkyc6p2TlvgZKn3W+NJd1WauoOVwU+r4fhqQ0ctnQFSdPKytjy9OC1u/KwFhyOD09HYcPH8b777+PqlWrlnc4Zc7Y8jAvb2o/0lDdvXsXWVlZGDNmDDw9PeHp6SmdPTJkyBAMHz68UiyHssAiOhcfHx+cOHFC+vYF+OdifJlMpnU3OkPTqFEjvP322zhw4IBW+759++Dl5SXdcdrHxwcpKSk4efKk1CcxMRF//vknfHx8pDYfHx8cOXIEWVlZWmPJ5XLp2h83NzdYWlpi//79Up+srCz88ssvOmNdu3YNN2/elNpOnjyJ5ORkvPfee/nO06tXr/DJJ58gISEBa9asga2trdHPc34uXbqErKwsNGzYEGZmZmjTpg0OHjyoM98ODg5o2LAhgH9Ot5PJZPjll1+kPikpKTh+/LhOrIWt86W9rMtSRc3hotD3/TAUpZXLhq44eVpZGVOeFrZ+5+Xly5f47bff0LJlyzcQYdnYt28fTE1N0bx5c6PJ4aNHj+Lly5d63ZXbGN5DY8rDvLzp/UhD5OjoiO+//17rLzQ0FAAwd+5czJ49u1Ish7JgOmfOnDnlHYQheeedd7B9+3acOHECdevWxZkzZ7Bw4UL07t0b/v7+5RZXWloajhw5ghs3biA2NhZPnjxBvXr1cOPGDdjY2KB69eqoVasWIiIioNFoAACrV6/Gr7/+iq+//hr169cHANSvXx8XL17Ejh07YGtrizt37mD27NmoU6cOpk+fLp3iYm9vj/Xr1+PatWuwtrbG0aNHERERgYkTJ8LT0xMAUKVKFZiYmCAyMhI1atRAWloaFi9ejL///hthYWHSqR1NmjTB4cOHsX//ftSvXx9//fUXvvjiC3h4eGDUqFH5zvPs2bOxd+9efPLJJ6hduzYePnwo/dnY2MDU1NTo5hkAJkyYgNu3b0OtVuPhw4c4fPgwvvrqKzRq1AghISEwNTWFnZ0dvvvuOzx+/BjVq1fHzp07sWnTJsyaNQvvvPMOAMDS0hJJSUnYuHEjateujWfPnmHevHlIS0vD119/Ld0cTd91vjSXdVky1BwuitLKd0NRWrlsSEorTysrY8jTHIWt3xcuXMAXX3yBjIwMqFQqnD9/HjNnzsSdO3ewcOFCvYru8jZy5EgkJSUhNTUVt27dwrp167Bp0yYEBQVJP+NW0XI4L//5z3+QkZGB0NBQrTsQnz17tsK/h3kxpjzMy5vejzRE5ubmaNiwodZfRkYGdu3ahQkTJsDJyQlAxdnHMyjl9PvUBu3GjRti6NChwtnZWXh5eYkFCxaIjIyMco3pzp07QqFQ5PkXFxcn9du2bZvo0qWLaNGihQgICBBHjx7VGUulUonQ0FDh4eEhXFxcxIQJE8TDhw91+p07d0707dtXODk5CR8fHxEZGSk0Go1WH41GI1auXCl8fHyEk5OT6Nu3rzh//rzOWA8fPhQTJkwQLi4uwsPDQ4SGhgq1Wl3gPHfs2DHfeb5z545RzrMQQkRGRooePXoIV1dX4eLiIvz9/cXSpUt1pj18+LAICAgQLVq0EF26dBHbt2/XGSsjI0MsWLBAeHl5CWdnZzFs2DBx48YNnX76rvOluazLkiHmcFGUZr4bgtLMZUNRmnlaWVX0PM1R2Pp98+ZNMWLECOHt7S1atGghPDw8xOjRo8WlS5fKO3S9zZs3T3Tt2lU4OzsLJycnERAQIDZu3KizfaxIOZxbcnKyaNGihQgLC9N5zhjew/wYSx7mpTz2IyuCuLg4oVAoxOXLl7XaK9tyKCkTIXKd2E5EREREREREeapkx92JiIiIiIiIio9FNBEREREREZGeWEQTERERERER6YlFNBEREREREZGeWEQTERERERER6YlFNBEREREREZGeWEQTERERERER6YlFNBEREREREZGeWEQbmfDwcCiVyiJNc+rUKSiVShw4cKCMoiodSqUS4eHhb/x1c5bPqVOn3vhrExVVeeVJWdL3M2rnzp1QKpW4e/fuG4qMyHAFBQUhKCioWNMa4+cIEVFpYhFN9P9t2rQJO3fuLO8wiKgUMa+JSu78+fMIDw+HSqUq71CIKr1jx47xSy4DwCLayIwfPx6XL18u7zAqpOjoaOzatUun3dPTE5cvX4anp2c5REVE+urRowcuX74MOzs7qS2/vCai/F2+fBnjx4+XHl+4cAEREREsookMwLFjxxAREVHeYVR6LKKNyMuXL1GlShWYm5uXdyiSV69eITMzs7zDKBGZTAZzc3PIZEwXIn2kpaWVy+uamprC3NwcJiYm5fL6RMbC3NwcVapUKe8wiIgMFquCCirn2ucbN27g008/haenJwYNGpTnNdGxsbEYOHAgPDw84Orqim7duuE///lPgeNnZmZi7NixcHd3x/nz5/WK6e7du1AqlVi7di02bNiAzp07o2XLloiPj5fGXLZsGbp06QInJye89957CAsL0ymyMzMzMX/+fLRt2xaurq4YN24cHj58qPN6ISEh8PX1zXfZ5LZnzx706dMHrVq1gqenJwYPHozjx48DAHx9fXH9+nWcPn0aSqUSSqVSupYsv2ui9+/fj169esHZ2Rlt2rTB1KlTkZSUpBOjq6srkpKS8PHHH8PV1RVt27bFwoULkZ2drddyJeOQs14mJiZi6tSpcHd3R9u2bbF06VIIIfDgwQOMHz8ebm5u8Pb2xrp166RpMzMz8e2336JXr15wd3eHi4sLBg0ahLi4uAJf89q1a1AqlThy5IjUduXKFSiVSnz00UdafUeNGoW+fftKjw8fPowxY8agffv2cHJyQufOnbF8+XKd9TYoKAgBAQG4cuUKBg8ejFatWml9vhw7dgyDBg2Ci4sLXF1dMWbMGFy/fr1Yy/B1eX1G5b4muqC8zsrKQkREBLp27YqWLVuiTZs2GDhwIGJjY0scG1FuSUlJCA0NRbt27eDk5AR/f3/s2LFDen7atGla28scI0eOhKenp7RtyVnHz5w5g1mzZqFNmzZwc3PDZ599hpSUlELjePr0KaZPn4527dqhZcuW6N69e55narx+TXR4eDjCwsIAAJ06dZJyKSfPirOPQVQR3Lt3D3PmzEG3bt2kfb1Jkybp3HdDn+3J48ePERoaCh8fHzg5OaF9+/YYP368zliFbTNDQkKwadMmAJBy8fV93r1796JXr15wdXWFm5sbPvzwQ2zcuLEsFk+lx68ZK7h///vfeOuttzB58mQIIfDs2TOt569fv46xY8dCqVRi0qRJMDMzw61btwosjNPT0/Hxxx/jypUrWL9+PZydnYsU086dO5GRkYF+/frBzMwMVlZW0Gg0GD9+PM6dO4d+/frBwcEBf//9NzZu3IibN29ixYoV0vQzZszAjz/+iICAALi5uSEuLg5jxowp2oLJJSIiAuHh4XB1dcWkSZNQtWpVXLp0CXFxcWjfvj2mT5+OefPmwcLCAuPGjQMA/Otf/ypwHkNDQ9GyZUtMmTIFT58+xffff4/z589j9+7dkMvlUt/s7GyMHDkSzs7O+Oyzz3Dy5EmsW7cOjRo1wqBBg0o0X1TxTJ48GQ4ODvj0009x7NgxfPfdd7C2tsaWLVvQtm1bTJ06FT/99BMWLlyIli1bwtPTE6mpqdi+fTsCAgLQt29fvHjxAjt27MCoUaOwfft2ODo65vlaCoUCcrkcZ8+eRadOnQAAZ8+ehUwmw7Vr15CamgpLS0toNBpcuHAB/fr1k6bdtWsXLCwsMHz4cFhYWCAuLg7Lli1Damoqpk2bpvU6ycnJGD16NPz9/dG9e3fUrl0bALB7926EhISgffv2mDp1KtLS0hAdHY1BgwZh165daNiwYbGWob6fUQXldUREBCIjI9G3b184OzsjNTUVV65cwdWrV+Ht7V2suIjy8uTJE/Tr1w8mJiYYPHgwbGxsEBMTgxkzZiA1NRXDhg3DjBkzEBcXh2nTpmHr1q0wNTXFli1bcPz4cYSFhcHW1lZrzC+++AJyuRwTJkxAYmIioqOjcf/+fURFReV7JkZ6ejqCgoJw+/ZtDB48GA0bNsSBAwcQEhIClUqFoUOH5jldly5dcPPmTfz8888IDQ1FrVq1AAA2NjbF2scgqij++OMPXLhwAf7+/qhXrx7u3buH6OhoDBkyBHv37kX16tUB6Lc9mThxIm7cuIHAwEDY2dnh2bNniI2NxYMHD6RtoT7bzP79++PRo0eIjY2VvtzKERsbiylTpsDLywtTp04FACQkJOD8+fP55jeVgKAKadmyZUKhUIgpU6bk2Z5j/fr1QqFQiKdPn+Y7VlxcnFAoFGL//v0iNTVVBAYGijZt2og///yzSDHduXNHKBQK4ebmpvN6u3fvFs2aNRNnzpzRao+OjhYKhUKcO3dOCCHEX3/9JRQKhZgzZ45WvylTpgiFQiGWLVsmtU2bNk107NhRJ47cy+DmzZuiWbNmIjg4WGRnZ2v11Wg00v/9/f1FYGCgzng5yycuLk4IIURmZqbw8vISAQEBIj09Xer366+/CoVCIb799lutGBUKhYiIiNAas2fPnuKjjz7SeS0yXjnr5cyZM6W2V69eCR8fH6FUKkVkZKTUnpKSIpydncW0adOkfhkZGVrjpaSkiHbt2onQ0FCt9tx5MmbMGNGnTx/p8YQJE8SECROEo6OjOHbsmBBCiKtXrwqFQiEOHz4s9UtLS9OZh5kzZ4pWrVppxRIYGCgUCoWIjo7W6puamio8PDzE559/rtX++PFj4e7urtNeEH0/o3744QehUCjEnTt3pLb88rp79+5izJgxesdAVFzTp08X3t7e4tmzZ1rtkydPFu7u7lKu/f7770KhUIgVK1aI27dvCxcXF/Hxxx9rTZOzjn/00UciMzNTal+9erVODgcGBmqt+xs2bBAKhULs2bNHasvMzBT9+/cXLi4uQq1WS+25P0fWrFmjk1tC6LePQVRR5bUdvHDhglAoFGLXrl1SW2Hbk5SUFKFQKMSaNWvy7VOUbebcuXO19nNzfPnll8LNzU28evWqwPmi0sHTuSu4AQMGFPh8zhHRI0eOQKPRFNhXrVZj5MiRSEhIQFRUVL5HtwrTtWtX2NjYaLUdOHAADg4OsLe3x7Nnz6S/tm3bAoB0qvSxY8cAQOdnOUryDdrhw4eh0WgQHBysc11zca6dvHLlCp4+fYqBAwdqXX/eoUMH2Nvb47ffftOZZuDAgVqP3d3d+TM8lVSfPn2k/5uamsLJyQlCCK12uVyOJk2a4M6dO1I/MzMzAIBGo0FycjJevXoFJycn/PnnnwW+nru7O/7880+8fPkSAHDu3Dn4+PigWbNmOHfuHIB/jk6bmJjA3d1dmq5atWrS/1NTU/Hs2TN4eHggLS0NCQkJWq9hZmaGXr16abWdOHECKpUK/v7+Wjkvk8nQqlWrYv1kXGl9RgH/LOPr16/j5s2bxR6DqDBCCPzyyy/w9fWVzhbL+Wvfvj3UajWuXr0KAGjfvj369++P5cuXY+LEiTA3N8cXX3yR57j9+/dH1apVpccDBw5ElSpVpG1oXmJiYlCnTh0EBARIbVWrVkVQUBBevnyJM2fOFHn+irKPQVTRvL4dzMrKwvPnz9G4cWPI5XKtbW9h25Nq1aqhatWqOH36dL6XXZTGNlMulyMtLY2XJb0hPJ27givsdMgPPvgA27dvx+eff47FixfDy8sLXbp0wfvvv69TUM6fPx+ZmZnYtWsX3nnnnVKN6datW4iPj4eXl1ee0zx9+hTAP9efyGQyNG7cWOt5e3v7Ysdz+/ZtyGQyODg4FHuM192/fx8A0KRJE53n7O3tpcIkh7m5uc6XClZWVnpdv0bGp0GDBlqPa9asmec6UrNmTSQnJ0uPd+3ahXXr1iExMRFZWVlSe2GfAR4eHnj16hUuXryIevXq4enTp/Dw8MCNGzdw9uxZAP8U0U2bNoW1tbU03fXr17F06VLExcUhNTVVa0y1Wq312NbWViryc+TsTOT3BZilpWWBceeltD6jAGDSpEn4+OOP0a1bNygUCrRv3x49evRAs2bNSjQu0euePXsGlUqFrVu3YuvWrfn2yTFt2jQcPXoUf/31FxYvXixdGpHbW2+9pfW4Ro0aqFOnDu7du5dvLPfu3cNbb72ls+3P2TbmbNuKoij7GEQVTXp6OiIjI7Fz504kJSVBCCE99/p2sLDtiZmZGaZOnYqFCxfC29sbrVq1QocOHdCzZ0/UqVMHQOlsMwcNGoT9+/dj9OjRsLW1hbe3N/z8/ODj41PcRUAFYBFdwRV2J+5q1aph06ZNOHXqFH777Tf8/vvv2LdvH7Zu3Yp169bB1NRU6tupUyfs27cPq1atQlhYWLE3gK9/c5dDo9FAoVAgNDQ0z2nq1atX5NfJ7yiyod2w6/VlTJRXXuW3juRssPfs2YOQkBB07twZI0eORO3atWFqaorIyEjpaHV+nJycYG5ujjNnzqBBgwaoXbs2mjRpAg8PD2zevBmZmZk4d+4cOnfuLE2jUqkQGBgIS0tLTJo0CY0bN4a5uTmuXr2KRYsW6Rxxyivnc2IPCwuTdhL0meeClNZnFPDPT9cdOnQIR44cQWxsLHbs2IGNGzdi7ty5WjdYIyqJnFzp3r27zs38crx+U6C//vpL+lL577//LvsAS6go+xhEFc28efOwc+dODB06FC4uLqhZsyZMTEyk+xDl0Gd7MmzYMPj6+uLw4cM4fvw4vv32W6xatQobN25E8+bNS2WbWbt2bezevRvHjx9HTEwMYmJisHPnTvTs2RMLFy4spaVCOVhEVwIymQxeXl7w8vJCaGgoVq5ciSVLluDUqVNo166d1K9z585o3749QkJCUKNGDcydO7fUYmjcuDGuXbsGLy+vAk+htrOzg0ajwe3bt7WOPuc+fRT457SVvH6zMve36Y0bN4ZGo0F8fHyBp3/qe2p3zpHExMREnSPriYmJOkcaiUrq4MGDaNSoESIiIrTW02XLlhU6rZmZGZydnXH27Fk0aNAAHh4eAP45zTszMxM//vgjnjx5ovU76KdPn0ZycjIiIiK02otyCUKjRo0A/LNRf/1zpiSK8xlVUF5bW1ujd+/e6N27N168eIHAwECEh4eziKZSY2Njgxo1akCj0RSaBy9fvkRoaCiaNm0KV1dXrFmzBp07d87zxnm3bt2SLocCgBcvXuDx48cFHnGys7PD//7v/0Kj0Wh9AZWzfS1o21VQHum7j0FU0Rw8eBA9e/ZESEiI1JaRkaFzNhag3/akcePGGDFiBEaMGIGbN2+iZ8+eWLduHRYtWlSkbWZB+WhmZgZfX1/4+vpCo9Fgzpw52Lp1Kz7++GOdM1ioZHiujZF7/XTQHDmFZF6/39yzZ098/vnn2LJlC7755ptSi8PPzw9JSUnYtm2bznPp6enS9Zo5OwBRUVFaffK6PX/jxo2hVqtx7do1qe3Ro0c4dOiQVr/OnTtDJpNh+fLlOkfQXv8msXr16nkW5bk5OTmhdu3a2LJli9YyPHbsGOLj49GhQ4dCxyAqipxvoF9fXy9duoSLFy/qNb27uzsuX76MU6dOSdc929jYwMHBAatXrwYAqbgG/u9o+euvl5mZic2bN+sd87vvvgtLS0tERkZqnX6eI/cvCeirqJ9R+eX18+fPtR7XqFEDjRs3rvC/a0+GxdTUFN26dcPBgwfzPLL8eh4sWrQIDx48wIIFCxASEgI7OzuEhITkuU5u3bpVK6+io6Px6tWrAotoHx8fPH78GPv27ZPaXr16haioKFhYWGh9YZZbzl2IcxcPRd3HIKpI8jr6GxUVpXPGY2Hbk7S0NGRkZGj1ady4MWrUqCH1Kco2Mycfc2/bcschk8mkM12Yj6WPR6KN3PLly3H27Fm89957sLOzw9OnT7F582bUq1dP6yZCrwsMDERqaiqWLFmCmjVrSj8NUxI9evTA/v37MXv2bJw6dQpubm7Izs5GQkICDhw4gDVr1qBly5ZwdHREQEAANm/eDLVaDVdXV8TFxeHWrVs6Y37wwQdYtGgRJkyYgKCgIKSnpyM6OhpNmjSRbtQC/HPt2Lhx47BixQoMGjQIXbt2hZmZGf744w/UrVsXn376KQCgRYsWiI6OxooVK/DWW2/BxsYmz2u4q1atiqlTpyI0NBSBgYHw9/eXfuLKzs4Ow4YNK/HyInpdhw4d8MsvvyA4OBgdOnTA3bt3sWXLFjRt2lT6AqogHh4eWLlyJR48eKBVLHt4eGDr1q2ws7PTuqTC1dUVVlZWCAkJQVBQEExMTLBnzx6torowlpaWmDNnDj777DP06tULH3zwAWxsbHD//n0cO3YMbm5umDVrVtEWxP9XlM+o/PLa398frVu3RosWLWBtbY0//vgDBw8eRGBgYLFiIsrPp59+ilOnTqFfv37o27cvmjZtipSUFFy9ehUnT57E6dOncfLkSWzevBkTJkxAixYtAABff/01goKCsHTpUnz22WdaY2ZlZWHYsGHw8/NDYmIiNm/eDHd3d+mn7PLSv39/bN26FSEhIbh69Srs7Oxw8OBBnD9/HtOnTy/wmsucmJYsWYIPPvgAVatWRceOHYu1j0FUUXTo0AF79uyBpaUlmjZtiosXL+LEiRNa9w8BUOj25ObNmxg2bBjef/99NG3aFKampjh8+DCePHkCf39/AEXbZubk45dffon27dvD1NQU/v7++Pzzz5GSkoK2bdvC1tYW9+/fx3//+184OjqW2n2B6P+wiDZyvr6+uHfvHn744Qc8f/4ctWrVQuvWrTFx4kTUrFkz3+nGjRsHtVot7aQOHjy4RHHkHAnesGED9uzZg0OHDqF69epo2LAhgoKCtG7SNX/+fNSqVQs//fQTjhw5gjZt2mDVqlV47733tMasVasWIiIisGDBAnzzzTdo2LAhpunqZOQAAAL/SURBVEyZglu3bmkV0cA/v6fdsGFD/Pe//8WSJUtQvXp1KJVK9OjRQ+oTHByM+/fvY82aNXjx4gVat26d743QevXqhWrVqmH16tVYtGgRLCws0LlzZ/zP//yP1m9EE5WGXr164cmTJ9i6dSuOHz+Opk2b4ptvvsGBAwdw+vTpQqd3dXWFqakpqlWrpnXjrJwi+vXCGvgnt1auXImFCxdi6dKlkMvl6N69O7y8vDBy5Ei94/7www9Rt25drFq1CmvXrkVmZiZsbW3h4eGhczfvotL3Myq/vA4KCsLRo0cRGxuLzMxMNGjQAJ988kmR5o9IH//617+wfft2LF++HIcOHUJ0dDSsra3RtGlTTJ06FampqZgxYwaaN2+u9YWQh4cHhgwZgvXr16Nr165wcXGRnps1axZ++uknLFu2DFlZWdIOdEGneVarVg1RUVFYtGgRdu3ahdTUVDRp0gRff/11ofno7OyMf//739iyZQt+//13aDQaHDlypNj7GEQVwYwZMyCTyfDTTz8hIyMDbm5uWL9+PUaNGqXVr7DtSb169eDv74+TJ0/ixx9/hKmpKezt7bF06VJ069ZNGkffbWbXrl0RFBSEvXv34scff4QQAv7+/ujevTu2bduGzZs3Q6VSoU6dOvDz88PEiRN5o78yYCKKcmiBiIiIiMrFzp07ERoaih07dqBly5blHQ4RUaXFryWIiIiIiIiI9MTTualQ2dnZhd4EyMLCAjVq1HhDERGRMcjMzCz099Jr1qyZ509oEREREZUXFtFUqAcPHhR4sxIAmDBhAiZOnPiGIiIiY3DhwgUMGTKkwD76XK9JRERE9CbxmmgqVEZGBs6dO1dgn0aNGkm/cUdEpI+cOxQXpGnTpqhbt+4bioiIiIiocCyiiYiIiIiIiPTEG4sRERERERER6YlFNBEREREREZGeWEQTERERERER6YlFNBEREREREZGeWEQTERERERER6YlFNBEREREREZGeWEQTERERERER6YlFNBEREREREZGe/h9o7Oym2kVDlgAAAABJRU5ErkJggg==" -} -``` - -### Triggers - -_This plugin does not contain any triggers._ - -### Custom Output Types - -_This plugin does not contain any custom output types._ - -## Troubleshooting - -_This plugin does not contain any troubleshooting information._ - -# Version History - -* 1.0.3 - Set plugin status to obsolete. This plugin will no longer be supported. -* 1.0.2 - Updated numpy package -* 1.0.1 - New spec and help.md format for the Extension Library -* 1.0.0 - Initial plugin - -# Links - -* [Matplotlib](https://matplotlib.org/) -* [Seabborn](https://seaborn.pydata.org) - -## References diff --git a/plugins/matplotlib/icon.png b/plugins/matplotlib/icon.png deleted file mode 100644 index c83db9cd7b..0000000000 Binary files a/plugins/matplotlib/icon.png and /dev/null differ diff --git a/plugins/matplotlib/komand_matplotlib/__init__.py b/plugins/matplotlib/komand_matplotlib/__init__.py deleted file mode 100755 index bace8db897..0000000000 --- a/plugins/matplotlib/komand_matplotlib/__init__.py +++ /dev/null @@ -1 +0,0 @@ -# GENERATED BY KOMAND SDK - DO NOT EDIT diff --git a/plugins/matplotlib/komand_matplotlib/actions/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/__init__.py deleted file mode 100755 index 932dbd2c77..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT - -from .create_line_plot.action import CreateLinePlot - -from .create_scatter_plot.action import CreateScatterPlot - -from .create_distribution_plot.action import CreateDistributionPlot - -from .create_joint_plot.action import CreateJointPlot - -from .create_pair_plot.action import CreatePairPlot - diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/__init__.py deleted file mode 100755 index fbe98c7462..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .action import CreateDistributionPlot diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/action.py b/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/action.py deleted file mode 100755 index 19674bc5d2..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/action.py +++ /dev/null @@ -1,55 +0,0 @@ -import insightconnect_plugin_runtime -from .schema import CreateDistributionPlotInput, CreateDistributionPlotOutput - -# Custom imports below -import base64 -import pandas as pd -import seaborn as sns -from io import BytesIO -from insightconnect_plugin_runtime.exceptions import PluginException - - -class CreateDistributionPlot(insightconnect_plugin_runtime.Action): - def __init__(self): - super(self.__class__, self).__init__( - name="create_distribution_plot", - description="Create a distribution plot that illustrates the distribution between two data series", - input=CreateDistributionPlotInput(), - output=CreateDistributionPlotOutput(), - ) - - def run(self, params={}): - # Set styles - sns.set_palette(params.get("color_palette")) - sns.set(style=params.get("margin_style")) - - # Process the data and create the plot - try: - decoded_data = base64.b64decode(params.get("csv_data")) - except Exception as error: - self.logger.error(f"Failed to decode base64 encoded CSV data with error: {error}") - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - column = params.get("column") - df = pd.read_csv(BytesIO(decoded_data)) - - if not column or (column not in df): - error = f"Column ({column}) not found in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - # AxesSubplots (the plot object returned) don't have the savefig method, get the figure, then save it - self.logger.info("Creating plot...") - plot = sns.distplot(df[column], kde=params.get("kde")) - fig = plot.get_figure() - - # bbox_inches is required to ensure that labels are cut off - fig.savefig("plot.png", bbox_inches="tight") - with open("plot.png", "rb") as f: - plot = base64.b64encode(f.read()) - - return {"csv": params.get("csv_data"), "plot": plot.decode("utf-8")} - - def test(self): - self.logger.info("No connection required, success!") - return {"csv": "", "plot": ""} diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/schema.py b/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/schema.py deleted file mode 100755 index 1614a8f2a4..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_distribution_plot/schema.py +++ /dev/null @@ -1,127 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Component: - DESCRIPTION = "Create a distribution plot that illustrates the distribution between two data series" - - -class Input: - COLOR_PALETTE = "color_palette" - COLUMN = "column" - CSV_DATA = "csv_data" - KDE = "kde" - MARGIN_STYLE = "margin_style" - - -class Output: - CSV = "csv" - PLOT = "plot" - - -class CreateDistributionPlotInput(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "color_palette": { - "type": "string", - "title": "Color Palette", - "description": "Color palette of the plot", - "default": "dark", - "enum": [ - "deep", - "muted", - "bright", - "pastel", - "dark", - "colorblind" - ], - "order": 4 - }, - "column": { - "type": "string", - "title": "Column", - "description": "Column containing values for distribution plotting", - "order": 2 - }, - "csv_data": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV Data", - "description": "Base64 encoded CSV data from which to create the plot", - "order": 1 - }, - "kde": { - "type": "boolean", - "title": "KDE", - "description": "Display a kernel density estimation line on the plot", - "default": false, - "order": 3 - }, - "margin_style": { - "type": "string", - "title": "Margin Style", - "description": "Style of the margin of the plot", - "default": "dark", - "enum": [ - "darkgrid", - "whitegrid", - "dark", - "white", - "ticks" - ], - "order": 5 - } - }, - "required": [ - "color_palette", - "column", - "csv_data", - "kde", - "margin_style" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) - - -class CreateDistributionPlotOutput(insightconnect_plugin_runtime.Output): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "csv": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV", - "description": "Base64 encoded CSV data used to generate the plot", - "order": 1 - }, - "plot": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "Plot", - "description": "Base64 encoded PNG plot data (can be attached to an email)", - "order": 2 - } - }, - "required": [ - "csv", - "plot" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/__init__.py deleted file mode 100755 index e32d13e3df..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .action import CreateJointPlot diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/action.py b/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/action.py deleted file mode 100755 index 27bda778c3..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/action.py +++ /dev/null @@ -1,66 +0,0 @@ -import insightconnect_plugin_runtime -from insightconnect_plugin_runtime.exceptions import PluginException - -from .schema import CreateJointPlotInput, CreateJointPlotOutput - -# Custom imports below -import base64 -import pandas as pd -import seaborn as sns -from io import BytesIO - - -class CreateJointPlot(insightconnect_plugin_runtime.Action): - def __init__(self): - super(self.__class__, self).__init__( - name="create_joint_plot", - description="Create a joint plot that illustrates the distribution between two data series", - input=CreateJointPlotInput(), - output=CreateJointPlotOutput(), - ) - - def run(self, params={}): - # Set styles - sns.set_palette(params.get("color_palette")) - sns.set(style=params.get("margin_style")) - - # Process the data and create the plot - try: - decoded_data = base64.b64decode(params.get("csv_data")) - except Exception as error: - self.logger.error(f"Failed to decode base64 encoded CSV data with error: {error}") - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - df = pd.read_csv(BytesIO(decoded_data)) - x = params.get("x_value") - y = params.get("y_value") - kind = params.get("kind") - - args = {"data": df, "x": x, "y": y, "kind": kind} - - if not x or (x not in df): - error = f"Column for X value({x}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - elif not y or (y not in df): - error = f"Column for Y value ({y}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - # JointPlots have the savefig method, call it directly - self.logger.info("Creating plot...") - plot = sns.jointplot(**args) - - # bbox_inches is required to ensure that labels are cut off - plot.savefig("plot.png", bbox_inches="tight") - with open( - "plot.png", - "rb", - ) as f: - plot = base64.b64encode(f.read()) - - return {"csv": params.get("csv_data"), "plot": plot.decode("utf-8")} - - def test(self): - self.logger.info("No connection required, success!") - return {"csv": "", "plot": ""} diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/schema.py b/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/schema.py deleted file mode 100755 index cdcdcf2549..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_joint_plot/schema.py +++ /dev/null @@ -1,142 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Component: - DESCRIPTION = "Create a joint plot that illustrates the distribution between two data series" - - -class Input: - COLOR_PALETTE = "color_palette" - CSV_DATA = "csv_data" - KIND = "kind" - MARGIN_STYLE = "margin_style" - X_VALUE = "x_value" - Y_VALUE = "y_value" - - -class Output: - CSV = "csv" - PLOT = "plot" - - -class CreateJointPlotInput(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "color_palette": { - "type": "string", - "title": "Color Palette", - "description": "Color palette of the plot", - "default": "dark", - "enum": [ - "deep", - "muted", - "bright", - "pastel", - "dark", - "colorblind" - ], - "order": 5 - }, - "csv_data": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV Data", - "description": "Base64 encoded CSV data from which to create the plot", - "order": 1 - }, - "kind": { - "type": "string", - "title": "Kind", - "description": "Kind of data representation to use in the created plot", - "default": "scatter", - "enum": [ - "scatter", - "reg", - "resid", - "kde", - "hex" - ], - "order": 4 - }, - "margin_style": { - "type": "string", - "title": "Margin Style", - "description": "Style of the margin of the plot", - "default": "dark", - "enum": [ - "darkgrid", - "whitegrid", - "dark", - "white", - "ticks" - ], - "order": 6 - }, - "x_value": { - "type": "string", - "title": "X Value", - "description": "Column containing values for the X-axis of the plot", - "order": 2 - }, - "y_value": { - "type": "string", - "title": "Y Value", - "description": "Column containing values for the Y-axis of the plot", - "order": 3 - } - }, - "required": [ - "color_palette", - "csv_data", - "kind", - "margin_style", - "x_value", - "y_value" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) - - -class CreateJointPlotOutput(insightconnect_plugin_runtime.Output): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "csv": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV", - "description": "Base64 encoded CSV data used to generate the plot", - "order": 1 - }, - "plot": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "Plot", - "description": "Base64 encoded PNG plot data (can be attached to an email)", - "order": 2 - } - }, - "required": [ - "csv", - "plot" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/__init__.py deleted file mode 100755 index 68e0d4301d..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .action import CreateLinePlot diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/action.py b/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/action.py deleted file mode 100755 index 738ef9e9e0..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/action.py +++ /dev/null @@ -1,75 +0,0 @@ -import insightconnect_plugin_runtime -from insightconnect_plugin_runtime.exceptions import PluginException - -from .schema import CreateLinePlotInput, CreateLinePlotOutput - -# Custom imports below -import base64 -import pandas as pd -import seaborn as sns -from io import BytesIO - - -class CreateLinePlot(insightconnect_plugin_runtime.Action): - def __init__(self): - super(self.__class__, self).__init__( - name="create_line_plot", - description="Create a line plot with an X/Y axis", - input=CreateLinePlotInput(), - output=CreateLinePlotOutput(), - ) - - def run(self, params={}): - # Set styles - sns.set_palette(params.get("color_palette")) - sns.set(style=params.get("margin_style")) - - # Process the data and create the plot - try: - decoded_data = base64.b64decode(params.get("csv_data")) - except Exception as error: - self.logger.error(f"Failed to decode base64 encoded CSV data with error: {error}") - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - df = pd.read_csv(BytesIO(decoded_data)) - x = params.get("x_value") - y = params.get("y_value") - hue = params.get("hue") - - args = {"data": df, "x": x, "y": y} - - if not x or (x not in df): - error = f"Column ({x}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - elif not y or (y not in df): - error = f"Column ({y}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - if hue and (len(hue) > 0): - args["hue"] = hue - - if hue not in df: - error = f"Column for hue ({hue}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - # AxesSubplots (the plot object returned) don't have the savefig method, get the figure, then save it - self.logger.info("Creating plot...") - plot = sns.lineplot(**args) - fig = plot.get_figure() - - # bbox_inches is required to ensure that labels are cut off - fig.savefig("plot.png", bbox_inches="tight") - with open( - "plot.png", - "rb", - ) as f: - plot = base64.b64encode(f.read()) - - return {"csv": params.get("csv_data"), "plot": plot.decode("utf-8")} - - def test(self): - self.logger.info("No connection required, success!") - return {"csv": "", "plot": ""} diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/schema.py b/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/schema.py deleted file mode 100755 index 7521920376..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_line_plot/schema.py +++ /dev/null @@ -1,133 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Component: - DESCRIPTION = "Create a line plot with an X/Y axis" - - -class Input: - COLOR_PALETTE = "color_palette" - CSV_DATA = "csv_data" - HUE = "hue" - MARGIN_STYLE = "margin_style" - X_VALUE = "x_value" - Y_VALUE = "y_value" - - -class Output: - CSV = "csv" - PLOT = "plot" - - -class CreateLinePlotInput(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "color_palette": { - "type": "string", - "title": "Color Palette", - "description": "Color palette of the plot", - "default": "dark", - "enum": [ - "deep", - "muted", - "bright", - "pastel", - "dark", - "colorblind" - ], - "order": 5 - }, - "csv_data": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV Data", - "description": "Base64 encoded CSV data from which to create the plot", - "order": 1 - }, - "hue": { - "type": "string", - "title": "Hue", - "description": "Column by which to provide data segmentation (labels)", - "order": 4 - }, - "margin_style": { - "type": "string", - "title": "Margin Style", - "description": "Style of the margin of the plot", - "default": "dark", - "enum": [ - "darkgrid", - "whitegrid", - "dark", - "white", - "ticks" - ], - "order": 6 - }, - "x_value": { - "type": "string", - "title": "X Value", - "description": "Column containing values for the X-axis of the plot", - "order": 2 - }, - "y_value": { - "type": "string", - "title": "Y Value", - "description": "Column containing values for the Y-axis of the plot", - "order": 3 - } - }, - "required": [ - "color_palette", - "csv_data", - "margin_style", - "x_value", - "y_value" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) - - -class CreateLinePlotOutput(insightconnect_plugin_runtime.Output): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "csv": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV", - "description": "Base64 encoded CSV data used to generate the plot", - "order": 1 - }, - "plot": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "Plot", - "description": "Base64 encoded PNG plot data (can be attached to an email)", - "order": 2 - } - }, - "required": [ - "csv", - "plot" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/__init__.py deleted file mode 100755 index 4761b1d0b0..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .action import CreatePairPlot diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/action.py b/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/action.py deleted file mode 100755 index 13dc6f70bd..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/action.py +++ /dev/null @@ -1,61 +0,0 @@ -import insightconnect_plugin_runtime -from insightconnect_plugin_runtime.exceptions import PluginException - -from .schema import CreatePairPlotInput, CreatePairPlotOutput - -# Custom imports below -import base64 -import pandas as pd -import seaborn as sns -from io import BytesIO - - -class CreatePairPlot(insightconnect_plugin_runtime.Action): - def __init__(self): - super(self.__class__, self).__init__( - name="create_pair_plot", - description="Create a pair plot that illustrates the distribution between all numerical columns in a data set", - input=CreatePairPlotInput(), - output=CreatePairPlotOutput(), - ) - - def run(self, params={}): - # Set styles - sns.set_palette(params.get("color_palette")) - sns.set(style=params.get("margin_style")) - - # Process the data and create the plot - try: - decoded_data = base64.b64decode(params.get("csv_data")) - except Exception as error: - self.logger.error(f"Failed to decode base64 encoded CSV data with error: {error}") - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - df = pd.read_csv(BytesIO(decoded_data)) - kind = params.get("kind") - hue = params.get("hue") - - args = {"kind": kind} - - if hue and (len(hue) > 0): - args["hue"] = hue - - if hue not in df: - error = f"Column for hue ({hue}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - # Pairgrids have the savefig method, call it directly - self.logger.info("Creating plot...") - plot = sns.pairplot(df, **args) - - # bbox_inches is required to ensure that labels are cut off - plot.savefig("plot.png", bbox_inches="tight") - with open("plot.png", "rb") as f: - plot = base64.b64encode(f.read()) - - return {"csv": params.get("csv_data"), "plot": plot.decode("utf-8")} - - def test(self): - self.logger.info("No connection required, success!") - return {"csv": "", "plot": ""} diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/schema.py b/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/schema.py deleted file mode 100755 index 847dcbee8d..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_pair_plot/schema.py +++ /dev/null @@ -1,133 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Component: - DESCRIPTION = "Create a pair plot that illustrates the distribution between all numerical columns in a data set" - - -class Input: - COLOR_PALETTE = "color_palette" - CSV_DATA = "csv_data" - HUE = "hue" - KIND = "kind" - MARGIN_STYLE = "margin_style" - - -class Output: - CSV = "csv" - PLOT = "plot" - - -class CreatePairPlotInput(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "color_palette": { - "type": "string", - "title": "Color Palette", - "description": "Color palette of the plot", - "default": "dark", - "enum": [ - "deep", - "muted", - "bright", - "pastel", - "dark", - "colorblind" - ], - "order": 4 - }, - "csv_data": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV Data", - "description": "Base64 encoded CSV data from which to create the plot", - "order": 1 - }, - "hue": { - "type": "string", - "title": "Hue", - "description": "Column by which to provide data segmentation (labels)", - "order": 3 - }, - "kind": { - "type": "string", - "title": "Kind", - "description": "Kind of data representation to use in the created plot", - "default": "scatter", - "enum": [ - "scatter", - "reg", - "resid", - "kde", - "hex" - ], - "order": 2 - }, - "margin_style": { - "type": "string", - "title": "Margin Style", - "description": "Style of the margin of the plot", - "default": "dark", - "enum": [ - "darkgrid", - "whitegrid", - "dark", - "white", - "ticks" - ], - "order": 5 - } - }, - "required": [ - "color_palette", - "csv_data", - "kind", - "margin_style" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) - - -class CreatePairPlotOutput(insightconnect_plugin_runtime.Output): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "csv": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV", - "description": "Base64 encoded CSV data used to generate the plot", - "order": 1 - }, - "plot": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "Plot", - "description": "Base64 encoded PNG plot data (can be attached to an email)", - "order": 2 - } - }, - "required": [ - "csv", - "plot" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/__init__.py b/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/__init__.py deleted file mode 100755 index 870b13625e..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .action import CreateScatterPlot diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/action.py b/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/action.py deleted file mode 100755 index 4d8edda6ed..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/action.py +++ /dev/null @@ -1,75 +0,0 @@ -import insightconnect_plugin_runtime -from insightconnect_plugin_runtime.exceptions import PluginException - -from .schema import CreateScatterPlotInput, CreateScatterPlotOutput - -# Custom imports below -import base64 -import pandas as pd -import seaborn as sns -from io import BytesIO - - -class CreateScatterPlot(insightconnect_plugin_runtime.Action): - def __init__(self): - super(self.__class__, self).__init__( - name="create_scatter_plot", - description="Create a scatter plot with an X/Y axis", - input=CreateScatterPlotInput(), - output=CreateScatterPlotOutput(), - ) - - def run(self, params={}): - # Set styles - sns.set_palette(params.get("color_palette")) - sns.set(style=params.get("margin_style")) - - # Process the data and create the plot - try: - decoded_data = base64.b64decode(params.get("csv_data")) - except Exception as error: - self.logger.error(f"Failed to decode base64 encoded CSV data with error: {error}") - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - df = pd.read_csv(BytesIO(decoded_data)) - x = params.get("x_value") - y = params.get("y_value") - hue = params.get("hue") - - args = {"data": df, "x": x, "y": y} - - if not x or (x not in df): - error = f"Column ({x}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - elif not y or (y not in df): - error = f"Column ({y}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - if hue and (len(hue) > 0): - args["hue"] = hue - - if hue not in df: - error = f"Column for hue ({hue}) not in data set, cannot create plot..." - self.logger.error(error) - raise PluginException(preset=PluginException.Preset.UNKNOWN, data=error) - - # AxesSubplots (the plot object returned) don't have the savefig method, get the figure, then save it - self.logger.info("Creating plot...") - plot = sns.scatterplot(**args) - fig = plot.get_figure() - - # bbox_inches is required to ensure that labels are cut off - fig.savefig("plot.png", bbox_inches="tight") - with open( - "plot.png", - "rb", - ) as f: - plot = base64.b64encode(f.read()) - - return {"csv": params.get("csv_data"), "plot": plot.decode("utf-8")} - - def test(self): - self.logger.info("No connection required, success!") - return {"csv": "", "plot": ""} diff --git a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/schema.py b/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/schema.py deleted file mode 100755 index 8c6e5c241c..0000000000 --- a/plugins/matplotlib/komand_matplotlib/actions/create_scatter_plot/schema.py +++ /dev/null @@ -1,133 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Component: - DESCRIPTION = "Create a scatter plot with an X/Y axis" - - -class Input: - COLOR_PALETTE = "color_palette" - CSV_DATA = "csv_data" - HUE = "hue" - MARGIN_STYLE = "margin_style" - X_VALUE = "x_value" - Y_VALUE = "y_value" - - -class Output: - CSV = "csv" - PLOT = "plot" - - -class CreateScatterPlotInput(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "color_palette": { - "type": "string", - "title": "Color Palette", - "description": "Color palette of the plot", - "default": "dark", - "enum": [ - "deep", - "muted", - "bright", - "pastel", - "dark", - "colorblind" - ], - "order": 5 - }, - "csv_data": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV Data", - "description": "Base64 encoded CSV data from which to create the plot", - "order": 1 - }, - "hue": { - "type": "string", - "title": "Hue", - "description": "Column by which to provide data segmentation (labels)", - "order": 4 - }, - "margin_style": { - "type": "string", - "title": "Margin Style", - "description": "Style of the margin of the plot", - "default": "dark", - "enum": [ - "darkgrid", - "whitegrid", - "dark", - "white", - "ticks" - ], - "order": 6 - }, - "x_value": { - "type": "string", - "title": "X Value", - "description": "Column containing values for the X-axis of the plot", - "order": 2 - }, - "y_value": { - "type": "string", - "title": "Y Value", - "description": "Column containing values for the Y-axis of the plot", - "order": 3 - } - }, - "required": [ - "color_palette", - "csv_data", - "margin_style", - "x_value", - "y_value" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) - - -class CreateScatterPlotOutput(insightconnect_plugin_runtime.Output): - schema = json.loads(r""" - { - "type": "object", - "title": "Variables", - "properties": { - "csv": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "CSV", - "description": "Base64 encoded CSV data used to generate the plot", - "order": 1 - }, - "plot": { - "type": "string", - "format": "bytes", - "displayType": "bytes", - "title": "Plot", - "description": "Base64 encoded PNG plot data (can be attached to an email)", - "order": 2 - } - }, - "required": [ - "csv", - "plot" - ], - "definitions": {} -} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/connection/__init__.py b/plugins/matplotlib/komand_matplotlib/connection/__init__.py deleted file mode 100755 index c78d3356be..0000000000 --- a/plugins/matplotlib/komand_matplotlib/connection/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from .connection import Connection diff --git a/plugins/matplotlib/komand_matplotlib/connection/connection.py b/plugins/matplotlib/komand_matplotlib/connection/connection.py deleted file mode 100755 index 5c5a78c8ac..0000000000 --- a/plugins/matplotlib/komand_matplotlib/connection/connection.py +++ /dev/null @@ -1,16 +0,0 @@ -import insightconnect_plugin_runtime -from .schema import ConnectionSchema - -# Custom imports below -import logging.config - -# Use a custom logger to decrease verbosity for matplotlib -logging.getLogger("matplotlib").setLevel(logging.INFO) - - -class Connection(insightconnect_plugin_runtime.Connection): - def __init__(self): - super(self.__class__, self).__init__(input=ConnectionSchema()) - - def connect(self, params): - pass diff --git a/plugins/matplotlib/komand_matplotlib/connection/schema.py b/plugins/matplotlib/komand_matplotlib/connection/schema.py deleted file mode 100755 index 10cc2e684f..0000000000 --- a/plugins/matplotlib/komand_matplotlib/connection/schema.py +++ /dev/null @@ -1,16 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -import insightconnect_plugin_runtime -import json - - -class Input: - pass - - -class ConnectionSchema(insightconnect_plugin_runtime.Input): - schema = json.loads(r""" - {} - """) - - def __init__(self): - super(self.__class__, self).__init__(self.schema) diff --git a/plugins/matplotlib/komand_matplotlib/tasks/__init__.py b/plugins/matplotlib/komand_matplotlib/tasks/__init__.py deleted file mode 100644 index 7020c9a4ad..0000000000 --- a/plugins/matplotlib/komand_matplotlib/tasks/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT - diff --git a/plugins/matplotlib/komand_matplotlib/triggers/__init__.py b/plugins/matplotlib/komand_matplotlib/triggers/__init__.py deleted file mode 100755 index 7020c9a4ad..0000000000 --- a/plugins/matplotlib/komand_matplotlib/triggers/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT - diff --git a/plugins/matplotlib/komand_matplotlib/util/__init__.py b/plugins/matplotlib/komand_matplotlib/util/__init__.py deleted file mode 100755 index bace8db897..0000000000 --- a/plugins/matplotlib/komand_matplotlib/util/__init__.py +++ /dev/null @@ -1 +0,0 @@ -# GENERATED BY KOMAND SDK - DO NOT EDIT diff --git a/plugins/matplotlib/plugin.spec.yaml b/plugins/matplotlib/plugin.spec.yaml deleted file mode 100644 index 5ba48b72b9..0000000000 --- a/plugins/matplotlib/plugin.spec.yaml +++ /dev/null @@ -1,372 +0,0 @@ -plugin_spec_version: v2 -extension: plugin -products: [insightconnect] -name: matplotlib -title: Matplotlib -description: Provides graphing capability of base64 encoded CSV data using Matplotlib, - NumPy, Pandas, and Seaborn -version: 1.0.3 -vendor: rapid7 -support: community -supported_versions: ["Matplotlib 3.0.1"] -status: [obsolete] -resources: - source_url: https://github.com/rapid7/insightconnect-plugins/tree/master/plugins/matplotlib - license_url: https://github.com/rapid7/insightconnect-plugins/blob/master/LICENSE - vendor_url: https://www.matplotlib.org -tags: -- plotting -- graphing -- data -- csv -hub_tags: - use_cases: [data_utility] - keywords: [plotting, graphing, data, csv] - features: [] -actions: - create_line_plot: - title: Create Line Plot - description: Create a line plot with an X/Y axis - input: - csv_data: - title: CSV Data - description: Base64 encoded CSV data from which to create the plot - type: bytes - required: true - example: UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg== - x_value: - title: X Value - description: Column containing values for the X-axis of the plot - type: string - required: true - example: ExampleColumnName - y_value: - title: Y Value - description: Column containing values for the Y-axis of the plot - type: string - required: true - example: ExampleColumnName - hue: - title: Hue - description: Column by which to provide data segmentation (labels) - type: string - required: false - example: ExampleColumnName - color_palette: - title: Color Palette - description: Color palette of the plot - type: string - required: true - default: dark - enum: - - deep - - muted - - bright - - pastel - - dark - - colorblind - example: dark - margin_style: - title: Margin Style - description: Style of the margin of the plot - type: string - required: true - default: dark - enum: - - darkgrid - - whitegrid - - dark - - white - - ticks - example: dark - output: - csv: - title: CSV - description: Base64 encoded CSV data used to generate the plot - type: bytes - required: true - example: c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK - plot: - title: Plot - description: Base64 encoded PNG plot data (can be attached to an email) - type: bytes - required: true - example: iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg== - create_scatter_plot: - title: Create Scatter Plot - description: Create a scatter plot with an X/Y axis - input: - csv_data: - title: CSV Data - description: Base64 encoded CSV data from which to create the plot - type: bytes - required: true - example: UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg== - x_value: - title: X Value - description: Column containing values for the X-axis of the plot - type: string - required: true - example: ExampleColumnName - y_value: - title: Y Value - description: Column containing values for the Y-axis of the plot - type: string - required: true - example: ExampleColumnName - hue: - title: Hue - description: Column by which to provide data segmentation (labels) - type: string - required: false - example: ExampleColumnName - color_palette: - title: Color Palette - description: Color palette of the plot - type: string - required: true - default: dark - enum: - - deep - - muted - - bright - - pastel - - dark - - colorblind - example: dark - margin_style: - title: Margin Style - description: Style of the margin of the plot - type: string - required: true - default: dark - enum: - - darkgrid - - whitegrid - - dark - - white - - ticks - example: dark - output: - csv: - title: CSV - description: Base64 encoded CSV data used to generate the plot - type: bytes - required: true - example: c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK - plot: - title: Plot - description: Base64 encoded PNG plot data (can be attached to an email) - type: bytes - required: true - example: iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg== - create_distribution_plot: - title: Create Distribution Plot - description: Create a distribution plot that illustrates the distribution between - two data series - input: - csv_data: - title: CSV Data - description: Base64 encoded CSV data from which to create the plot - type: bytes - required: true - example: UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg== - column: - title: Column - description: Column containing values for distribution plotting - type: string - required: true - example: ExampleColumnName - kde: - title: KDE - description: Display a kernel density estimation line on the plot - type: boolean - required: true - default: false - example: false - color_palette: - title: Color Palette - description: Color palette of the plot - type: string - required: true - default: dark - enum: - - deep - - muted - - bright - - pastel - - dark - - colorblind - example: dark - margin_style: - title: Margin Style - description: Style of the margin of the plot - type: string - required: true - default: dark - enum: - - darkgrid - - whitegrid - - dark - - white - - ticks - example: dark - output: - csv: - title: CSV - description: Base64 encoded CSV data used to generate the plot - type: bytes - required: true - example: c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK - plot: - title: Plot - description: Base64 encoded PNG plot data (can be attached to an email) - type: bytes - required: true - example: iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg== - create_joint_plot: - title: Create Joint Plot - description: Create a joint plot that illustrates the distribution between two - data series - input: - csv_data: - title: CSV Data - description: Base64 encoded CSV data from which to create the plot - type: bytes - required: true - example: UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg== - x_value: - title: X Value - description: Column containing values for the X-axis of the plot - type: string - required: true - example: ExampleColumnName - y_value: - title: Y Value - description: Column containing values for the Y-axis of the plot - type: string - required: true - example: ExampleColumnName - kind: - title: Kind - description: Kind of data representation to use in the created plot - type: string - required: true - default: scatter - enum: - - scatter - - reg - - resid - - kde - - hex - example: scatter - color_palette: - title: Color Palette - description: Color palette of the plot - type: string - required: true - default: dark - enum: - - deep - - muted - - bright - - pastel - - dark - - colorblind - example: dark - margin_style: - title: Margin Style - description: Style of the margin of the plot - type: string - required: true - default: dark - enum: - - darkgrid - - whitegrid - - dark - - white - - ticks - example: dark - output: - csv: - title: CSV - description: Base64 encoded CSV data used to generate the plot - type: bytes - required: true - example: c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK - plot: - title: Plot - description: Base64 encoded PNG plot data (can be attached to an email) - type: bytes - required: true - example: iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg== - create_pair_plot: - title: Create Pair Plot - description: Create a pair plot that illustrates the distribution between all - numerical columns in a data set - input: - csv_data: - title: CSV Data - description: Base64 encoded CSV data from which to create the plot - type: bytes - required: true - example: UmFwaWQ3IEluc2lnaHRDb25uZWN0Cg== - kind: - title: Kind - description: Kind of data representation to use in the created plot - type: string - required: true - default: scatter - enum: - - scatter - - reg - - resid - - kde - - hex - example: scatter - hue: - title: Hue - description: Column by which to provide data segmentation (labels) - type: string - required: false - example: ExampleColumnName - color_palette: - title: Color Palette - description: Color palette of the plot - type: string - required: true - default: dark - enum: - - deep - - muted - - bright - - pastel - - dark - - colorblind - example: dark - margin_style: - title: Margin Style - description: Style of the margin of the plot - type: string - required: true - default: dark - enum: - - darkgrid - - whitegrid - - dark - - white - - ticks - example: dark - output: - csv: - title: CSV - description: Base64 encoded CSV data used to generate the plot - type: bytes - required: true - example: c29sdXRpb24scmlza19yZWR1Y3Rpb24sbWFsd2FyZV9raXRzLGV4cGxvaXRzLGFzc2V0cwpVcGdyYWRlIHRjcGR1bXAsMjk1NDQ5LDAsMCw1NDAKVXBncmFkZSB0byB0aGUgbGF0ZXN0IHZlcnNpb24gb2YgT3JhY2xlIEphdmEsMTkyNDg3LDMzLDE4LDU1MApVcGdyYWRlIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiBvZiBQSFAsNzY3NDksMCwxNSwxNjgKMjAxOC0wNyBDdW11bGF0aXZlIFVwZGF0ZSBmb3IgV2luZG93cyBTZXJ2ZXIgMjAxNiBmb3IgeDY0LWJhc2VkIFN5c3RlbXMgKEtCNDMzODgxNCksNzIxODUsMCw3NywzODYKVXBncmFkZSBjdXJsLDM5ODA0LDAsMCw5NwpVcGdyYWRlIGxpYmN1cmwzLDM5Mjk4LDAsMCw5NgpEaXNhYmxlIGluc2VjdXJlIFRMUy9TU0wgcHJvdG9jb2wgc3VwcG9ydCwzODIzOCwwLDI0LDk2CkNvbmZpZ3VyZSBTTUIgc2lnbmluZyBmb3IgV2luZG93cywzMjk4MSwwLDAsNDAKT2J0YWluIGEgbmV3IGNlcnRpZmljYXRlIGZyb20geW91ciBDQSBhbmQgZW5zdXJlIHRoZSBzZXJ2ZXIgY29uZmlndXJhdGlvbiBpcyBjb3JyZWN0LDIzNjMxLDAsMCwzNApVcGdyYWRlIHBlcmwsMjI2NjUsMCwwLDY5CkZpeCB0aGUgc3ViamVjdCdzIENvbW1vbiBOYW1lIChDTikgZmllbGQgaW4gdGhlIGNlcnRpZmljYXRlLDIyMDczLDAsMCwyOApVcGdyYWRlIGRuc21hc3EsMTY4NDAsMCw0Miw0MgoiRGlzYWJsZSBTU0x2MiwgU1NMdjMsIGFuZCBUTFMgMS4wLiBUaGUgYmVzdCBzb2x1dGlvbiBpcyB0byBvbmx5IGhhdmUgVExTIDEuMiBlbmFibGVkIiwxNjc5MCwwLDAsMzQKRGlzYWJsZSBJQ01QIHJlZGlyZWN0IHN1cHBvcnQsMTY3NzcsMCwwLDIzClVwZ3JhZGUgbGliYzYsMTYxODksMCwyNiw0MgogRW5hYmxlIEdSVUIgcGFzc3dvcmQgLDE1Njg2LDAsMCwyMQpVcGdyYWRlIGxpYm1hZ2ljMSwxNTYzMCwwLDAsNDUKVXBncmFkZSBmaWxlLDE1NjMwLDAsMCw0NQpEaXNhYmxlIFRMUy9TU0wgc3VwcG9ydCBmb3IgM0RFUyBjaXBoZXIgc3VpdGUsMTU1MzEsMCwzMiw2NApVcGdyYWRlIGxpYnhtbDIsMTU1MTksMCwwLDU0CkVkaXQgJy9ldGMvc2VjdXJldHR5JyBlbnRyaWVzLDE1MDgwLDAsMCwyMQpSZW1vdmUgdGhlIHN1aWQgYml0IGZyb20gdGhlIHNjcmlwdCwxNDk4MCwwLDAsMjEKVXBncmFkZSBrZXJuZWwsMTQ2MTYsMCwxNiw1MApDdW11bGF0aXZlIFNlY3VyaXR5IFVwZGF0ZSBmb3IgSW50ZXJuZXQgRXhwbG9yZXIgMTEgZm9yIFdpbmRvd3MgU2VydmVyIDIwMTIgUjIgKEtCNDMzOTA5MyksMTM4NjksMCwyLDc3CkZvbGxvdyB0aGUgc3RlcHMgb3V0bGluZWQgYmVsb3cgdG8gcmVtZWRpYXRlIHRoZSBhcHBsaWNhYmxlIHdlYWtuZXNzLiwxMzgyOSwwLDAsMzEK - plot: - title: Plot - description: Base64 encoded PNG plot data (can be attached to an email) - type: bytes - required: true - example: iVBORw0KGgoAAAANSUhEUgAAAmgAAAG/CAYAAADsPCtDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3Xt01NW9///n5DK5MgnBEAMESKICKpiAXGIw3EQgqPSstj+0lYpEaqtgQe1Pi1qxegp6RFq8YAhRq6e2VXvaitxFhAJBVIgWuZMEwi2AITdym8l8vn+EGRjCLZkkM5O8Hmuxhvl89uz9zpi1ePve+7O3yTAMAxERERHxGn6eDkBEREREXClBExEREfEyStBEREREvIwSNBEREREvowRNRERExMsoQRMRERHxMkrQRERERLyMEjQRERERL6METURERMTLKEETERER8TJK0ERERES8jBI0ERERES+jBE1ERETEyyhBExEREfEyStBEREREvEyApwOQyzMMA7vd8HQYIiIicoX8/EyYTKYmf14Jmg+w2w2Ki097OgwRERG5QlFRYfj7Nz1B0xSniIiIiJdRgiYiIiLiZZSgiYiIiHgZr0rQ1q1bx7333suQIUO48cYbGTVqFHPmzKG8vNyl3WeffcZdd91F3759GTNmDH//+98b9FVbW8uLL75IamoqSUlJ3H///eTl5TVot3//fu6//36SkpJITU3lpZdeora2tkG7Dz/8kDFjxtC3b1/uuusu1q5d26BNeXk5s2bNYtCgQSQnJ/PII49w/PhxN74RERERaY+8KkErKSmhX79+PPfcc2RnZ3P//ffzz3/+k1/96lfONl999RXTpk0jKSmJrKwsxo0bx1NPPcWKFStc+nrhhRf48MMPmTlzJq+++iq1tbVMnjzZJdkrLS3lvvvuw2q18uqrrzJz5kw++OAD5s6d69LX0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNputBb4tERERaatMhmF49f4NH3zwAc888wzr168nJiaGjIwMTp8+zV//+ldnm8cee4ydO3eybNkyAI4dO8bIkSN59tlnmThxIlCf/I0YMYKHHnqIqVOnApCZmcmbb77J2rVriYyMBOBvf/sbzz33HGvXriUmJgaAMWPGcOONNzJv3jznmHfffTcdOnQgKysLgG3btnH33XeTnZ3N0KFDAcjLyyM9PZ1XXnmF9PT0Jn8HdXV2PcUpIiLiQ+qf4mx6HcyrKmgX4kicrFYrtbW1fPHFF4wdO9alTXp6Ovv37+fQoUMAbNiwAbvd7tIuMjKS1NRU1q9f77y2fv16UlJSnGMAjBs3DrvdzsaNGwEoLCykoKCAcePGNRgzJyfHOR26fv16LBYLqampzjYJCQn06dPHZUwRERGRy/HKBK2uro6amhq+++47Xn/9dUaOHEm3bt04ePAgVquVhIQEl/aJiYkAzjVmeXl5dOrUiYiIiAbtzl2HlpeX16Avi8VCdHS0S18A8fHxDfqyWq0UFhY628XHxzfYlC4hIeGCa99ERERELsYrN6odMWIERUVFANx6663OqcXS0lKgPok6l+O9435ZWRkdOnRo0K/FYnG2cbQ7vy+AiIgIZzt3x4yIiGD79u2X/HlFREREzuWVCdqiRYuoqqpi3759LFy4kF/84he8/fbbng5LREREpFV4ZYLWu3dvAJKTk+nbty8TJkxg9erVXHPNNQANtt0oKysDcE5pWiwWKioqGvRbVlbmMu1psVga9AX1VTFHO8dreXk50dHRlxzz2LFjl+xLRERE5Ep45Rq0c/Xq1YvAwEAOHjxI9+7dCQwMbLCmy/HesZ4sISGBkydPukxnOtqdu+bsQuvDysvLOXHihEtf545xbl+BgYHExcU52+Xn53P+Q7H5+fkN1rmJiIiIXIrXJ2jffPMNVquVbt26YTabGTx4MCtXrnRps2zZMhITE+nWrRsAQ4cOxc/Pj1WrVjnblJaWsmHDBtLS0pzX0tLS2LRpk7MaBrBixQr8/PycT2PGxcXRs2fPBvusLVu2jJSUFMxms7Ov0tJScnJynG3y8/PZsWOHy5giIiIil+M/e/bs2Z4OwmHatGkcPHiQ8vJyjh07xqeffsp///d/ExcXx5NPPom/vz9du3Zl4cKFnDhxgpCQEP7v//6PP//5z/z2t7/l2muvBSA8PJyioiL+9Kc/0alTJ4qLi3n++eepqqpizpw5BAUFAXDttdfy4YcfsmnTJjp37syXX37Jiy++yA9/+EPGjx/vjKtjx4689tpr2O12ALKysli7di1z5swhNjYWgNjYWHJzc/noo4+IiYmhsLCQZ599lujoaGbNmoWfX9NzYcMwqKqyNvnzIiIi7Y3dMFi77TBWm51OEcGtPn5IiBk/P9PlG16EV21Uu2jRIpYtW8bBgwcxDIOuXbsyevRoMjIyCA8Pd7Zbs2YNf/jDH8jPz6dLly78/Oc/50c/+pFLX7W1tcyfP59//etfnD59mv79+/P00087t+Rw2L9/P88//zzbtm0jLCyMCRMmMHPmTGdlzOHDDz8kKyuLI0eOEB8fz6OPPsqIESNc2pSXlzNnzhxWr16NzWZj6NChPP30084Nb5tKG9WKiIg0zsb/HCV76U5iO4Xy31OHtPr47m5U61UJmlyYEjQREZErZ7cbPJW1maJTVYQEBfD6zNZfatTmTxIQERERaYwtO4soOlUFQFWNDbvd92pRStBERESkzbDbDZZsKnC5Vllj80wwblCCJiIiIm3GV7uPc/T7SkKDAjAH1Kc5p33wQTslaCIiItIm2A2DJRsLABg9MI4OofUP/FVUK0ETERER8Yitu09w+ORpQoL8GX1zN8JC6g9MqqzWFKeIiIhIq7MbBh+fqZ7dNiCO0OBAwoIDAU1xioiIiHjEN3tPcuhEBUFmf0YPrD+GMSzkTIKmCpqIiIhI6zJcqmfdCD+TmIUF109xqoImIiIi0sq+2f89B4rKCQr05/Yz1TPg7BSnKmgiIiIirccwDJZszAdgRP+uzic3AedDAqf1FKeIiIhI69meX0z+0XLMAX6MGdTd5Z4eEhARERFpZYZh8PGG+urZ8OSuRISZXe4716BpilNERESkdew4cIr9R8oIDPBj7ODuDe6fXYOmCpqIiIhIizu3ejbspi5Ehgc1aKNtNkRERERa0a6DJew9VEqAv4lxQ3pcsM2522wYhtGa4blNCZqIiIj4HMeTm7fe1IWOHRpWz+DsFGed3aDGWtdqsTUHJWgiIiLiU3YfPMWugyX4+5lIH3zh6hmAOdCPAH8T4HvncSpBExEREZ+yZFMBALf2i6VTRPBF25lMJmcVrcLHttpQgiYiIiI+Y9+hUnYUnKqvnl1k7dm5fPVBASVoIiIi4jM+3lS/9uyWG6/mqsiQy7YP9dHzOJWgiYiIiE/IO1LG9rxi/EwmxqdcvnoGEO6je6EpQRMRERGf8PGZJzdTboihc8fQK/qMY6sNPSQgIiIi0swKjpXx7f7vMZlg/C09r/hzjjVoFaqgiYiIiDSvJRsLABh8fQxXR11Z9QzO3axWFTQRERGRZnOwqJxte09iAu5sRPUMIFRr0ERERESan2Pfs4F9OhPbKaxRnw0L0Ro0ERERkWZ16EQFX+8+ATS+egbnPMWpbTZEREREmscnZ6pnN/eKpmt0eKM/f3ajWiVoIiIiIm47fPI0X+48DsAdTaiewdmNais0xSkiIiLivqWbCjCA5GuvontMhyb14TiLs6a2DludvRmja1lK0ERERMTrHP3+NF/sLALgrtT4JvcTGhSA6czffelBASVoIiIi4nWW5hzAMCDpmqvocXXTqmcAfn6ms+dx+tA6NCVoIiIi4lWKTlWy+bv66tmdqT3d7i/UBzerVYImIiIiXmVpzgHshkHfhE7Ex1rc7i/MBzerVYImIiIiXuNESRU5248BzVM9A9/cakMJmoiIiHiNpTkHqLMb3NCzI9d0jWiWPn3xPE4laCIiIuIVTpZWsfE/RwG4a2jTn9w8n6Y4RURERJpo+eaD1NkN+vToyLXdIputX8d5nKqgiYiIiDRCcVk1//72CAB3NdPaMwdnBa1GFTQRERGRK7b8i4PY6gyui4ukV/eOzdq3M0FTBU1ERETkypRU1LAut2WqZ3DOQwJagyYiIiJyZZZvPoitzs41XSPo06N5q2dwzjYbVUrQRERERC6rtKKGz3MPA/XVM5PJdJlPNN7ZCpqmOEVEREQua+WWQqw2OwldLNwQH9UiY5y7Ua3dMFpkjOamBE1EREQ8oqyyls+2HQJarnoGZytohgHVNXUtMkZzU4ImIiIiHrFqSyG1Vjs9ru5A34ROLTZOYIA/5oD6lMdXHhRQgiYiIiKtrqLKypqtLV89c3BMc1b6yDo0r0rQli9fzi9/+UvS0tJISkpiwoQJfPTRRxjnzBdPmjSJXr16Nfizf/9+l77Ky8uZNWsWgwYNIjk5mUceeYTjx483GHPr1q1MnDiRfv36MWLECBYtWuQyHoBhGCxatIjhw4fTr18/Jk6cSG5uboO+ioqKmD59OsnJyQwaNIinnnqKioqKZvp2RERE2o5VXx6kpraOuM7hJF1zVYuP55jmrPCRClqApwM41zvvvEPXrl158skn6dixI5s2beKZZ57h2LFjTJs2zdmuf//+PPHEEy6f7datm8v7GTNmsG/fPmbPnk1QUBB/+MMfmDp1Kn//+98JCKj/sQ8cOEBGRgapqanMmDGD3bt38/LLL+Pv709GRoazr6ysLBYsWMDjjz9Or169+POf/8yUKVP417/+RVxcHABWq5UHHngAgHnz5lFdXc2LL77IY489RmZmZot8XyIiIr7odLWVT79qveoZQGiwb2214VUJ2sKFC4mKOvsER0pKCiUlJbz99ts89NBD+PnVF/wsFgtJSUkX7Wfbtm1s2LCB7Oxshg4dCkB8fDzp6emsWrWK9PR0ALKzs+nYsSOvvPIKZrOZlJQUiouLefPNN5k0aRJms5mamhoyMzOZMmUKkydPBmDAgAGMHTuW7OxsZs+eDcDKlSvZu3cvy5YtIyEhwRlnRkYG3377Lf369Wvur0tERMQnrf6ykOraOrpFh5F8XXSrjOlrW2141RTnucmZQ58+faioqKCysvKK+1m/fj0Wi4XU1FTntYSEBPr06cP69etd2o0aNQqz2ey8lp6eTllZGdu2bQPqp0ArKioYN26cs43ZbGb06NEN+urVq5czOQNITU0lMjKSdevWXXHsIiIibVlltY3VZ6pnd6bG49cK1TM4dw2ab1TQvCpBu5Cvv/6amJgYwsPDnde2bNlCUlISffv25d577+XLL790+UxeXh7x8fENSqYJCQnk5eUBUFlZydGjR10SKkcbk8nkbOd4Pb9dYmIiR44cobq62tnu/DYmk4n4+HhnHyIiIu3dmq8Lqaqx0eWqMAb0ap3qGUC4j53H6dUJ2ldffcWyZcuYMmWK89rAgQN56qmnWLx4MS+++CJVVVXcf//9zooXQFlZGR06dGjQX0REBKWlpUD9QwRQPw15LrPZTEhIiLNdWVkZZrOZoKAgl3YWiwXDMFzaXW5MERGR9qyqxsaqLwsBuOOWHq1WPQMI1UMCzePYsWPMnDmTwYMH87Of/cx5/ZFHHnFpN3z4cO644w7eeOMNsrKyWjtMERERuUKfbT3E6WobMVGhDOod06pj+9p5nF5ZQSsrK2Pq1KlERkby6quvOh8OuJDQ0FCGDRvGd99957xmsVguuL1FaWkpERERAM5ql6OS5lBbW0tVVZWzncVioba2lpqamgYxmkwml3aXG1NERKS9qq61sXJLffXszlt64OfXetUzOPuQgPZBa6Lq6moefPBBysvLWbx48QWnDS8nISGB/Pz8BvuZ5efnO9eJhYaGEhsb22B9mONzjnaO1/z8fJd2eXl5dOnSheDgYGe78/syDMNlTBERkfZq7bbDVFRZ6dwxhMHXt271DFzP4/QFXpWg2Ww2ZsyYQV5eHosXLyYm5vL/ASsrK/n888/p27ev81paWhqlpaXk5OQ4r+Xn57Njxw7S0tJc2q1Zswar9ex/rGXLlmGxWEhOTgbq91wLDw9n+fLlzjZWq5VVq1Y16GvXrl0UFBQ4r+Xk5FBSUsKwYcMa90WIiIi0ITXWOlZ8cRCAO1J64n+JmbGW4nxIwEcqaF61Bu25555j7dq1PPnkk1RUVLjs1n/99dfz7bffsnjxYkaPHk3Xrl05fvw4b7/9NidOnOCPf/yjs21ycjJDhw5l1qxZPPHEEwQFBTF//nx69erF7bff7myXkZHBkiVLeOyxx7jnnnvYs2cP2dnZzJw507n1RlBQEA8++CCvvvoqUVFRXHfddfzlL3+hpKTEZTPbMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi0l6t23aY8korV0UEM+SG1q+ewdmHBHxlDZrJOH8e0INGjhzJ4cOHL3hvzZo11NXV8bvf/Y7du3dTUlJCSEgIycnJTJs2rUESVF5ezpw5c1i9ejU2m42hQ4fy9NNPN6jKbd26lblz57Jz506ioqL46U9/ytSpU1226HAc9fT+++9TXFxMnz59+M1vfuOssjkUFRXxwgsvsGHDBgICAhg9ejSzZs1y2SKkKerq7BQXn3arDxEREU+otdbxxJs5lJ6uZfK43qTd1MUjcVRW25j2h/r9SzMfH0ZggH+LjhcVFYa/f9MrhV6VoMmFKUETERFf9elXhbz/6V46WYKY82AKAW4kLe4wDIOpL32O3TB4ZVoqkeFBl/+QG9xN0LxqDZqIiIi0HVZbHcs2HwAgPaWnx5IzqN883pemOZWgiYiISIv497dHKamopWOHIIb2jfV0OD51HqcSNBEREWl2VpudpTlnqmdDehAY4PmUw5c2q/X8tyUiIiJtzsbtRzlVXkNEuJm0mzxfPQMI86GtNpSgiYiISLOy1dlZuulM9WxwjxZ/YvJKhYU4pjhVQRMREZF2Jmf7Mb4vq8YSZiYtyTPbalxIWJDvnCagBE1ERESaTZ3dzic5BQCMHdSdoEDvqJ7BORW0Kk1xioiISDuy+bsiTpRU0yE0kBHJXT0djouza9BUQRMREZF2os5u55NNBcCZ6pnZe6pncO4aNFXQREREpJ3YsvM4RaeqCA8JZER/76qeAYQGa5sNERERaUfsdsNZPbt9YBzB5gDPBnQB4ZriFBERkfbkq93HOfp9JaFBAYwa0M3T4VyQY4qzUlOcIiIi0tbZDYMlGwuA+upZSJD3Vc/g7EMCldU27HbDw9FcmhI0ERERccvW3Sc4fPI0IUEB3Hazd1bPAOdh6QZQWePdVTQlaCIiItJkdsPg4zPVs9E3d3MuxPdGAf5+zidLvX0dmhI0ERERabLcvSc5dKKCYLM/t90c5+lwLis82DfWoSlBExERkSYxDIOPN+YDMGpAN8JDvLd65hDmI1ttKEETERGRJvlm//ccLKogKNCf2wd6f/UMzq5Dq9AUp4iIiLQ1hmGw5Ez1bGT/rnQINXs4oisTFuKooGmKU0RERNqY7fnF5B8txxzgx5hB3T0dzhXzlfM4laCJiIhIoxiGwccb6qtnw5O7YgnzjeoZ+M5mtUrQREREpFF2FJxi/5EyAgP8GDfYd6pnoIcEREREpA0yDIN/nVl7NiypCxHhQR6OqHHCzjwkcFoVNBEREWkrdh0sYd+hUgL8/Rg3uIenw2k0RwVNT3GKiIhIm+F4cjPtplg6dvCt6hmcfYpTa9BERESkTdh98BS7Dpbg72cifYjvVc/gnClOrUETERGRtmDJpgIAbu0XS5Ql2LPBNNG522wYhuHhaC5OCZqIiIhc1r5DpewoOFVfPUvxzeoZnN1mw1ZnUGu1eziai1OCJiIiIpflOHMzte/VXBUR4uFomi4o0B9/PxPg3ZvVKkETERGRS9p/pJTt+cX4mUykp/T0dDhuMZlMPrHVhhI0ERERuaQlGwsASLkxhs6Rvls9czh7HqcqaCIiIuKDCo6V8e3+7zGZ4A4fr545+MJ5nErQRERE5KIc1bMh18cQExXq2WCaiaY4RURExGcdLCpn296TmIA7bunp6XCajXOKUxU0ERER8TWO6tmg62OI7RTm2WCaUahzs1pV0ERERMSHHDpewdd7TtRXz3x437MLCdcaNBEREfFFjlMDBvTuTNfocM8G08zOTnGqgiYiIiI+4vDJ03y16zgAd7ahtWcOvnAepxI0ERERcbF0UwEG0P+6aOI6t63qGUCopjhFRETElxz9/jRf7CwC2mb1DM6ex6mHBERERMQnfLLpAIYBSddcRY+rO3g6nBahhwRERETEZxSdqmTzjmMA3Jna07PBtCDHQwLVtXXY6uwejubClKCJiIgIAEvPVM/6JXYiPtbi6XBaTGhQgPPvlTXeOc2pBE1EREQ4UVLFpu1nqmdtdO2Zg5+fiZAg736SUwmaiIiIsDTnAHbD4Ib4KBK7Rng6nBbn7edxKkETERFp506WVrHxP0cBuKsNrz07l2MdWqWXPiigBE1ERKSdW775IHV2gz49OnJtt0hPh9Mqwrz8PE6vStCWL1/OL3/5S9LS0khKSmLChAl89NFHGIbh0u7DDz9kzJgx9O3bl7vuuou1a9c26Ku8vJxZs2YxaNAgkpOTeeSRRzh+/HiDdlu3bmXixIn069ePESNGsGjRogbjGYbBokWLGD58OP369WPixInk5uY26KuoqIjp06eTnJzMoEGDeOqpp6ioqHDzWxEREWk5xWXV/PvbI0D7qZ4BhJ3ZaqNCFbTLe+eddwgJCeHJJ59k4cKFpKWl8cwzz/D666872yxdupRnnnmGcePGkZWVRVJSEtOmTWuQMM2YMYONGzcye/ZsXn75ZfLz85k6dSo229lM+cCBA2RkZBAdHU1mZib33XcfCxYs4K233nLpKysriwULFjB58mQyMzOJjo5mypQpFBYWOttYrVYeeOABCgoKmDdvHrNnz2bDhg089thjLfRtiYiIuG/55oPY6gx6xUXSq3tHT4fTapzncXrpQwIBl2/SehYuXEhUVJTzfUpKCiUlJbz99ts89NBD+Pn5sWDBAsaPH8+MGTMAGDJkCHv27OH1118nKysLgG3btrFhwways7MZOnQoAPHx8aSnp7Nq1SrS09MByM7OpmPHjrzyyiuYzWZSUlIoLi7mzTffZNKkSZjNZmpqasjMzGTKlClMnjwZgAEDBjB27Fiys7OZPXs2ACtXrmTv3r0sW7aMhIQEACwWCxkZGXz77bf069evNb5CERGRK3aqvIZ137S/6hmcneKs1EMCl3ducubQp08fKioqqKyspLCwkIKCAsaNG+fSJj09nZycHGprawFYv349FouF1NRUZ5uEhAT69OnD+vXrndfWr1/PqFGjMJvNLn2VlZWxbds2oH4KtKKiwmVMs9nM6NGjG/TVq1cvZ3IGkJqaSmRkJOvWrWvqVyIiItJiVnxxEFudnWu6RdC7R/upnsHZKU5vPU3AqxK0C/n666+JiYkhPDycvLw8oL4adq7ExESsVqtzyjEvL4/4+HhMJpNLu4SEBGcflZWVHD161CWhcrQxmUzOdo7X89slJiZy5MgRqqurne3Ob2MymYiPj3f2ISIi4i1KK2r4PPcwUF89O//fzLbO27fZcGuK0zAM/va3v/HRRx9RWFhIWVlZgzYmk4kdO3Y0qf+vvvqKZcuW8cQTTwBQWloK1E8dnsvx3nG/rKyMDh0anh8WERHB9u3bgfqHCC7Ul9lsJiQkxKUvs9lMUFBQgzENw6C0tJTg4OBLjunoS0RExFus3FKI1WYnoYuFG3o2nMFq69r0GrSXXnqJd955hz59+nDXXXcREdF8G9sdO3aMmTNnMnjwYH72s581W78iIiLtXVllLZ9tOwTAXakNZ5zagzZdQfvnP//J7bffzh//+Mfmigeor1pNnTqVyMhIXn31Vfz86mdiHQlgeXk50dHRLu3PvW+xWDh27FiDfktLS51tHNUuRyXNoba2lqqqKpe+amtrqampcamilZWVYTKZXNpdaEuN0tJSYmNjm/AtiIiItIyVWw5Sa7XT8+oO9E1of9UzaONr0Kqrq7nllluaKxZnnw8++CDl5eUsXrzYZdrQscbr/DVdeXl5BAYGEhcX52yXn5/fYD+z/Px8Zx+hoaHExsY26MvxOUc7x2t+fn6DMbt06UJwcLCz3fl9GYbhMqaIiIinlVfW8tnXjrVn7bN6BudOcdoa5AvewK0ELSUlhf/85z/NFQs2m40ZM2aQl5fH4sWLiYmJcbkfFxdHz549WbFihcv1ZcuWkZKS4nwaMy0tjdLSUnJycpxt8vPz2bFjB2lpac5raWlprFmzBqvV6tKXxWIhOTkZgP79+xMeHs7y5cudbaxWK6tWrWrQ165duygoKHBey8nJoaSkhGHDhrnxrYiIiDSf1V8VUmOto3vncG66ppOnw/EYxxSn3TCorq3zcDQN+c92bOTVBDfffDNZWVmUlZWRmJhISEiIW8E8++yzLF26lBkzZtCpUyeOHTvm/BMVFYW/vz8dO3bktddew263A/WbyK5du5Y5c+Y4pxJjY2PJzc3lo48+IiYmhsLCQp599lmio6OZNWuWc8o0ISGBt99+m127dhEZGclnn33Ga6+9xvTp0xk4cCAAAQEBmEwmMjMzCQsLo6qqinnz5rFnzx5eeukl5xRnfHw8n376KcuXLyc2NpadO3fyu9/9jptvvpkHHnjAre/FMAyqvHQRo4iI+I7T1VYy//UdtjqDe2/vRZerwjwdksf4+/uxbPMB7HaD4cldCD0z5dlcQkLM+Pk1vTppMtyo6yUnJ2MYBjU1NQAEBQU5kx/nACYTX3/99RX1N3LkSA4fPnzBe2vWrKFbt25A/VFPWVlZHDlyhPj4eB599FFGjBjh0r68vJw5c+awevVqbDYbQ4cO5emnn25Qldu6dStz585l586dREVF8dOf/pSpU6e6lHwdRz29//77FBcX06dPH37zm984q2wORUVFvPDCC2zYsIGAgABGjx7NrFmzCA8Pv6Kf/2Lq6uwUF592qw8REZF//jsVg0f5AAAgAElEQVSPjzcW0C06jNlTBuHXTqc3HWa+toHSilqenTyQHlc33InBHVFRYfj7N32i0q0E7cknn7yiues5c+Y0dQhBCZqIiLivstrGrxduoqrGxkM/uJGbe3f2dEge98ziLzh88jSP353E9c281Yi7CZpbT3HOnTvXnY+LiIhIK/n060Kqamx0uSqM/r2iL/+BdsCbt9rw+pMERERExD1VNTZWf1l/2s6dt/Rs91ObDld3ql+DF2z293AkDbl9WHpFRQXvvPMOn3/+OUeO1B+42qVLF4YPH87kyZPdXn8lIiIi7vls6yFOV9u4OiqUgZradJo48hpu7RdLQhfL5Ru3MrfWoBUVFfHTn/6UQ4cOkZCQ4LJn2P79+4mLi+PPf/4znTvrl8EdWoMmIiJNVV1r4/9fmENFlZWpd1xPyo1XezqkdsGja9BefvllTp48SWZmZoO9vtatW8eMGTOYN28eL774ojvDiIiISBOt3XaYiiornTuGMOh6FUx8hVtr0P79739z3333XXAj1mHDhjFp0iTWrVvnzhAiIiLSRDXWOlZ8cRCoX3vm76el577Crf9SVVVVdOp08V2Ir7rqKqqqqtwZQkRERJpo3bbDlFdaiY4MZvD1MZf/gHgNtxK0xMREli5dSm1tbYN7VquVpUuXkpiY6M4QIiIi0gS11jqWn6mejU/pSYAb66Gk9bm1Bm3q1KnMnDmTH//4x/zkJz+hZ8+eQP1DAn/961/ZvXs38+fPb444RUREpBHWfXOE0tO1dLIEc4seDPA5biVo48aNc55N+eyzzzpPFTAMg06dOvH73/+esWPHNkugIiIicmWstjqWbz4AwPiUHqqe+SC3ttlwsNlsbN++3WUftBtvvJGAALe3WRO0zYaIiDTOZ1sP8b+r9tCxQxBzH0whMEAJWmvz6DYbzk4CAkhKSiIpKak5uhMREZEmstrsLM2pr56lD+mh5MxHNSpB+/LLLwEYOHCgy/vLcbQXERGRlrVx+1FOldcQGW4m7aZYT4cjTdSoBG3SpEmYTCa++eYbzGaz8/3FGIaByWRi586dbgcqIiIil2ars7N0U331bNyQHgQGeN8Zk3JlGpWgvfvuuwCYzWaX9yIiIuJ5m7Yf4/uyaixhZobd1MXT4YgbGpWgDRo06JLvRURExDNsdXY+2VQAwLjB3TEHqnrmy9xaOfizn/2MnJyci97fvHkzP/vZz9wZQkRERK7AFzuKOFlaTYfQQIYndfV0OOImtxK0LVu2cPLkyYveLy4uvuIHCURERKRp6uxnq2djB3UnyKzqma9z+9nbSz0kcODAAcLCwtwdQkRERC5hy87jFJ2qIjwkkBH9VT1rCxq9D9o//vEP/vGPfzjfL1y4kA8++KBBu/Lycnbv3k1aWpp7EYqIiMhF2e2Gs3o2ZlAcwWZtEt8WNPq/YlVVFadOnXK+P336NH5+DQtxoaGh3H333Tz88MPuRSgiIiIX9eWu4xz9vpKw4ABG9u/m6XCkmbh11NPIkSN56qmnGDVqVHPGJOfRUU8iInIhdsPgt9lbOHLyND+4NZ67UuM9HZKc4dGjnj777DN3Pi4iIiJu2Lr7BEdOniYkKIDbBqh61pa49ZDApk2beOWVVy56f/78+ZfchkNERESaxm4YfLyxAIDRN3cjNDjQswFJs3IrQXvjjTc4evToRe8XFRWxcOFCd4YQERGRC8jde5JDJyoINvszemCcp8ORZuZWgrZnzx5uuummi97v27cvu3fvdmcIEREROY9hGHy8MR+A227uRpiqZ22OWwlabW0tVqv1kverq6vdGUJERETO883+7zlYVEFQoD+3D+zu6XCkBbiVoF177bWsXr36gvcMw2DVqlUkJia6M4SIiIicwzAMPt5QXz0bOaAr4SGqnrVFbiVo9957L1u3buWRRx5h9+7d2Gw2bDYbu3bt4le/+hW5ublMmjSpuWIVERFp9/6TV0zBsXLMgX6MUfWszXJrm40JEyZQWFjIG2+8werVq50b1trtdkwmE7/85S/5r//6r2YJVEREpL07d+3ZiOSuWMLMHo5IWopbG9U6HDx4kNWrV1NYWAhA9+7due222+jeXZl9c9BGtSIiAvBdfjHz/pZLYIAfL/0ihYjwIE+HJBfh0Y1qHbp3705GRkZzdCUiIiIXYBgG/zpTPRue1FXJWRvn1ho0ERERaR27Dpaw71ApAf5+jB2sGaq2zq0KWu/evTGZTJdtt3PnTneGERERafeWnKmeDbupCx07qHrW1rmVoD388MMNErS6ujoOHz7Mp59+Snx8PCNGjHArQBERkfZu98FT7DpYQoC/iXFDVD1rD9xK0KZPn37Re8ePH2fixIn07NnTnSFERETaPceZm0P7dSHKEuzZYKRVtNgatM6dO3P33XfzxhtvtNQQIiIibd7eQyXsPHAKfz8T6aqetRst+pBASEgIhw4daskhRERE2rQlZ6pnqX1juSoixLPBSKtpsQRtz549vPfee5riFBERaaL9R0rZnl+Mn8nE+JQeng5HWpFba9BGjhx5wac4y8vLKS8vJzg4WFOcIiIiTeSont1y49VER6p61p64laANGjTogglaREQEcXFxjB8/nsjISHeGEBERaZfyj5bx7f7vMZlg/C2qnrU3biVoc+fOba44RERE5ByO6tmQ668mpmOoZ4ORVqeTBERERLzMgWPl5O47iQm4Q9WzdqlRFbTXXnut0QOYTCYefvjhRn9ORESkvfpkUwEAg66PIbZTmGeDEY9wO0FzrEEzDKPBdcMwlKCJiIg0wqHjFXy958SZ6llPT4cjHtKoBG3Xrl0u74uKivj5z3/Otddey3333Ud8fDwAeXl5/OlPf2L//v1kZmY2X7QiIiJt3JIz1bObe3em61WqnrVXbq1Be+655+jRowcvv/wyffv2JTw8nPDwcPr168e8efPo3r07v/vd7xrV54EDB/jtb3/LhAkTuP7667njjjsatJk0aRK9evVq8Gf//v0u7crLy5k1axaDBg0iOTmZRx55hOPHjzfob+vWrUycOJF+/foxYsQIFi1a1KAiaBgGixYtYvjw4fTr14+JEyeSm5vboK+ioiKmT59OcnIygwYN4qmnnqKioqJR34GIiLRPh0+e5qtd9f9O3anqWbvmVoK2efNmhgwZctH7Q4YMIScnp1F97t27l3Xr1tGjRw8SExMv2q5///787W9/c/nTrVs3lzYzZsxg48aNzJ49m5dffpn8/HymTp2KzWZztjlw4AAZGRlER0eTmZnJfffdx4IFC3jrrbdc+srKymLBggVMnjyZzMxMoqOjmTJlCoWFhc42VquVBx54gIKCAubNm8fs2bPZsGEDjz32WKO+AxERaZ8+2VSAAQy4LppuncM9HY54kFvbbAQFBZGbm8tPfvKTC97ftm0bQUFBjepz5MiR3HbbbQA8+eSTbN++/YLtLBYLSUlJF+1n27ZtbNiwgezsbIYOHQpAfHw86enprFq1ivT0dACys7Pp2LEjr7zyCmazmZSUFIqLi3nzzTeZNGkSZrOZmpoaMjMzmTJlCpMnTwZgwIABjB07luzsbGbPng3AypUr2bt3L8uWLSMhIcEZZ0ZGBt9++y39+vVr1HchIiLtx9HvT7NlRxEAd6b29Gww4nFuVdDuvPNOlixZwgsvvEBBQQF2ux273U5BQQHPP/88n3zyCXfeeWfjAvJrnp0/1q9fj8ViITU11XktISGBPn36sH79epd2o0aNwmw2O6+lp6dTVlbGtm3bgPop0IqKCsaNG+dsYzabGT16dIO+evXq5UzOAFJTU4mMjGTdunXN8nOJiEjb9MmmAxhA0jVX0T2mg6fDEQ9zq4L2+OOPc+rUKf73f/+XP//5z87kym63YxgG48eP5/HHH2+WQM+3ZcsWkpKSqKur46abbuJXv/oVAwcOdN7Py8sjPj6+wUkHCQkJ5OXlAVBZWcnRo0ddEipHG5PJRF5eHoMHD3a2P79dYmIif/rTn6iuriY4OJi8vLwGbUwmE/Hx8c4+REREzld0qpLNO44BcNfQnp4NRryCWwma2Wzmf/7nf8jIyGDdunUcOXIEgK5du5KWlkbv3r2bJcjzDRw4kAkTJtCzZ0+OHz9OdnY2999/P++99x7JyckAlJWV0aFDw/8DiYiIcE6blpeXA/XTkOf/XCEhIZSWljr7MpvNDaZrLRYLhmFQWlpKcHDwJcd09CUiInK+pZsOYBjQL7ETPa+2XP4D0ua5laA59O7du8WSsQt55JFHXN4PHz6cO+64gzfeeIOsrKxWi0NERMRdJ0qq2LS9vnqmtWfi0CwLvnJzc8nMzOT3v/89BQUFAFRVVfHdd99x+vTp5hjikkJDQxk2bBjfffed85rFYrng9halpaVEREQAOKtdjkqaQ21tLVVVVc52FouF2tpaampqXNqVlZVhMplc2l1uTBERkXMtzSnAbhjcGB9FYhf9WyH13ErQamtrmTZtGvfccw/z58/nvffe4+jRo/Ud+/kxZcoU3n333WYJtLESEhLIz89vsJ9Zfn6+c51YaGgosbGxDdaHOT7naOd4zc/Pd2mXl5dHly5dCA4OdrY7vy/DMFzGFBERcThZWsXG/5xZe5Ya7+FoxJu4laD98Y9/5PPPP2f27NmsWLHCJRkKCgpi7NixrFmzxu0gL6eyspLPP/+cvn37Oq+lpaVRWlrqsg9bfn4+O3bsIC0tzaXdmjVrsFqtzmvLli3DYrE417P179+f8PBwli9f7mxjtVpZtWpVg7527drlrCIC5OTkUFJSwrBhw5r1ZxYREd+3bPNB6uwGfXp05Jpuqp7JWW6tQVu6dCl33303EydO5NSpUw3uJyYmsmLFikb1WVVV5dyS4vDhw1RUVDj7GDRoEHl5eSxevJjRo0fTtWtXjh8/zttvv82JEyf44x//6OwnOTmZoUOHMmvWLJ544gmCgoKYP38+vXr14vbbb3e2y8jIYMmSJTz22GPcc8897Nmzh+zsbGbOnOnceiMoKIgHH3yQV199laioKK677jr+8pe/UFJSQkZGhrOvMWPGkJmZyfTp03n00UepqqripZdecp4+ICIi4lBcVs2/v6l/uG7CUFXPxJVbCdr3339Pr169Lnrf39+f6urqRvf5q1/9yuWa4/27777L1VdfjdVqZf78+ZSUlBASEkJycjLPPfdcgyToD3/4A3PmzOG3v/0tNpuNoUOH8vTTTxMQcPbH7tGjB9nZ2cydO5ef//znREVF8cgjjzBlyhSXvqZOnYphGLz11lsUFxfTp08fsrOziYuLc7YJDAxk8eLFvPDCCzz66KMEBAQwevRoZs2a1ajvQERE2r7lZ6pnvbtHcl1cpKfDES9jMs5fpNUIt99+O6NGjeKJJ57g1KlTpKSk8Pbbb5OSkgLAY489xp49e1iyZEmzBdwe1dXZKS5u+YctRESkdZwqr+GJN3Ow1dn59T3J9OnR0dMhSTOLigrD37/pK8ncWoN2xx138Ne//tW54z7g3Bj2gw8+YPny5fzgBz9wZwgREZE2Z8UXB7HV2bm2WwS9u6t6Jg25NcX5i1/8gm+++YZ7773Xufv+nDlzKC0t5dixYwwbNsx5dqWIiIhAaUUNn+ceBuqf3Dz/xBsRaIaTBBYvXszHH3/MypUrsdvt1NbW0qtXL2bMmMGECRP0iyciInKOFVsOYrXZSexi4fqemtqUC2tygma1Wtm/fz+RkZFMmDCBCRMmNGdcIiIibU7Z6VrWbquvnt2p6plcQpPXoPn5+fHDH/6QVatWNWc8IiIibdbKLw9Sa7UTH9uBvglRng5HvFiTEzR/f3+6dOlCbW1tc8YjIiLSJpVX1vLZ16qeyZVx6ynOe++9lw8++ICSkpLmikdERKRNWv1VITXWOrrHhHNTYidPhyNezq2HBOx2O2azmdGjRzNmzBi6du3qPJfSwWQy6UlOERFp105XW/n0q0OAntyUK+PWRrW9e/e+/AAmEzt37mzqEII2qhUR8XX//HceH28soFt0OLOnDMRPCVqb5+5GtW5V0FrjIHQRERFfVlltZbWzetZTyZlcEbcStK5duzaqfWVlJW+99RY/+MEP6NatmztDi4iI+IRPvz5EVY2NrleF0b9XtKfDER/h1kMCjVVZWcnrr79OYWFhaw4rIiLiEVU1NlZ/Wf9v3p2qnkkjtGqCBuDGkjcRERGf8tnWQ5yuthHbKZSbe3X2dDjiQ1o9QRMREWkPqmttrNxSXz2745ae+PmpeiZXTgmaiIhIC1i79TAVVVZiOoYwqI+qZ9I4StBERESaWU1tHSu2HATqq2f+fvrnVhpHvzEiIiLN7PPcw5RXWomODGbIDTGeDkd8kBI0ERGRZlRrrWP5F2eqZymqnknT6LdGRESkGa375ghlp2vpZAkm5carPR2O+Ci3ErTc3NzLtnn//fedf4+KimLNmjUMGDDAnWFFRES8ktVWx/LNBwAYf0sPAtw46kfaN7d+c6ZOncp333130fuZmZk8//zzZwfz86Nr166YzWZ3hhUREfFK//72KCUVtURZgki9MdbT4YgPcytB69+/P1OmTGH37t0N7s2bN4/58+eTkZHhzhAiIiI+wWqzszSnvnqWPqQHgQGqnknTufXb8+qrr3LDDTdw//33s3//fuf15557jqysLGbOnMnjjz/udpAiIiLebuN/jnKqvIbIcDO39lP1TNzjVoJmNptZuHAhiYmJ3Hfffezbt49f//rX/PWvf+WZZ57hwQcfbK44RUREvJatzs7SnALAUT3z92g84vsC3O0gKCiIzMxMpkyZwg9+8AMA5s6dy4QJE9wOTkRExBds2n6M78tqiAgzk3ZTF0+HI21AoxK0VatWXfTej370I/bs2cNtt91GSEiIS9vbb7+96RGKiIh4MVudnU82FQAwbnB3zIGqnon7TIZhGFfauHfv3phMJi70kUtd37lzp3tRtnN1dXaKi097OgwREbmAjf85SvbSnVhCA3nxl7cQpARNgKioMPzd2GalURW0d999t8kDiYiItDV19rPVszGDuys5k2bTqARt0KBBLRWHiIiIz9my4zhFp6oIDwlkRHJXT4cjbYjbDwmczzAMNm/eTG1tLQMGDCA8PLy5hxAREfE4u91giaN6NiiOYHOz/5Mq7Zhbv03z589n69atvPfee0B9cjZlyhQ2b96MYRh06dKFd955h+7duzdLsCIiIt7iy13HOVZcSVhwACP7d/N0ONLGuLUP2sqVK+nXr5/z/YoVK8jJyWHGjBlkZmZSV1fHq6++6naQIiIi3sRunK2e3T4wjpAgVc+kebn1G1VUVESPHj2c71evXs0111zj3KD2nnvu4S9/+Yt7EYqIiHiZrbtPcOTkaUKCAhg1IM7T4Ugb5FYFLSAggNraWqB+ejMnJ4dbb73Veb9Tp06cOnXKvQhFRES8iN0w+HhjAQCjb+5GaLCqZ9L83ErQrr32Wj7++GNKS0v5+9//TklJCcOGDXPeP3LkCB07dnQ7SBEREW+xbc9JDp2oICTIn9EDVT2TluFW2v/www/zi1/8giFDhgDQv39/598B1q1bR9++fd2LUERExEsYhsGSjfkAjBoQR1hwoIcjkrbKrQQtNTWVf/zjH2zcuBGLxUJ6errzXmlpKTfffDOjRo1yO0gRERFv8M2+7zl4vIIgsz+3q3omLahRRz2JZ+ioJxERzzMMg+f/9BUFx8pJH9KDHw1P9HRI4sXcPerJrTVoIiIi7cV/8oopOFaOOdCP2wepeiYtq1FTnL1798bPz4/c3FzMZrPz8PRLMZlM7Nixw60gRUREPMkwDD4+s/ZsZHI3LKFmD0ckbV2jErSHH34Yk8lEQED9x6ZNm9YiQYmIiHiTHQWnyDtSRmCAH2MG63QcaXmNStCmT5/u/HtVVRWfffYZP/7xj7nnnnuaPTARERFvYBgG/zpTPRue1JWIMFXPpOU1eQ1aSEgIhw4duuwUp4iIiC/bdeAU+w6VEuDvx7ghqp5J63DrIYFbb72VDRs2NFcsIiIiXsdxasCwpC5Ehgd5NhhpN9xK0B566CEKCgr49a9/zVdffUVRURElJSUN/oiIiPii3QdPsbuwhAB/E+O09kxakVsb1Y4fPx6Affv28cknn1y03c6dO90ZRkRExCMc1bNb+3UhyhLs2WCkXXH7qCetQRMRkbZo76ESdh44hb+fifQhPTwdjrQzbiVo5z7V2VwOHDhAdnY233zzDXv37iUhIeGC1bkPP/yQxYsXc+TIEeLj45k5cyYjRoxwaVNeXs6cOXP49NNPsVqt3HrrrTz99NN07tzZpd3WrVt58cUX2blzJ506deKee+5h6tSpLsmnYRhkZWXx/vvvU1xcTJ8+ffjNb35DUlKSS19FRUW88MILbNiwgcDAQEaPHs1vfvMbwsPDm/FbEhGRlrbkTPUstW8snSJUPZPW5XUnCezdu5d169bRo0cPEhMvfIzG0qVLeeaZZxg3bhxZWVkkJSUxbdo0cnNzXdrNmDGDjRs3Mnv2bF5++WXy8/OZOnUqNpvN2ebAgQNkZGQQHR1NZmYm9913HwsWLOCtt95y6SsrK4sFCxYwefJkMjMziY6OZsqUKRQWFjrbWK1WHnjgAQoKCpg3bx6zZ89mw4YNPPbYY834DYmISEvbf6SU7fnF+PuZuCNF1TNpfW5V0FrCyJEjue222wB48skn2b59e4M2CxYsYPz48cyYMQOAIUOGsGfPHl5//XWysrIA2LZtGxs2bCA7O5uhQ4cCEB8fT3p6OqtWrXIe7J6dnU3Hjh155ZVXMJvNpKSkUFxczJtvvsmkSZMwm83U1NSQmZnJlClTmDx5MgADBgxg7NixZGdnM3v2bABWrlzJ3r17WbZsGQkJCQBYLBYyMjL49ttv6devX4t9byIi0nwc1bOUG6/mqsgQzwYj7ZLXVdD8/C4dUmFhIQUFBYwbN87lenp6Ojk5OdTW1gKwfv16LBYLqampzjYJCQn06dOH9evXO6+tX7+eUaNGYTabXfoqKytj27ZtQP0UaEVFhcuYZrOZ0aNHN+irV69ezuQMIDU1lcjISNatW9eYr0FERDwk/2gZ3+7/Hj+TqmfiOV6XoF1OXl4eUF8NO1diYiJWq9U55ZiXl0d8fHyDhxgSEhKcfVRWVnL06FGXhMrRxmQyOds5Xs9vl5iYyJEjR6iurna2O7+NyWQiPj7e2YeIiHg3R/VsyA0xdO4Y6tlgpN3yuQSttLQUqJ86PJfjveN+WVkZHTp0aPD5iIgIZ5vy8vIL9mU2mwkJCXHpy2w2ExTkukGhxWLBMIxGjSkiIt7rwLFycvedxGSC8aqeiQf5XIImIiLSUj7ZVADA4D4xxHYK82ww0q75XIIWEREBnK1+OZSVlbnct1gsVFRUNPh8aWmps42j2nV+X7W1tVRVVbn0VVtbS01NTYMxTSZTo8YUERHvVHi8gq/3nMAE3HFLT0+HI+2czyVojjVe56/pysvLIzAwkLi4OGe7/Px8DMNwaZefn+/sIzQ0lNjY2AZ9OT7naOd4zc/PbzBmly5dCA4OdrY7vy/DMFzGFBER77TkTPVsYJ/OdLlK1TPxLJ9L0OLi4ujZsycrVqxwub5s2TJSUlKcT2OmpaVRWlpKTk6Os01+fj47duwgLS3NeS0tLY01a9ZgtVpd+rJYLCQnJwPQv39/wsPDWb58ubON1Wpl1apVDfratWsXBQUFzms5OTmUlJQwbNiw5vkCRESk2R0+UcHXu44Dqp6Jd/Cf7djEy0tUVVWxZs0a9u3bx8aNGzl58iRXX301+/btIyoqipCQEDp27Mhrr72G3W4H6jeRXbt2LXPmzCE2NhaA2NhYcnNz+eijj4iJiaGwsJBnn32W6OhoZs2a5dzOIyEhgbfffptdu3YRGRnJZ599xmuvvcb06dMZOHAgAAEBAZhMJjIzMwkLC6Oqqop58+axZ88eXnrpJef0ZXx8PJ9++inLly8nNjaWnTt38rvf/Y6bb76ZBx54oMnfiWEYVFVZL99QRESa5C9r9nLoxGkG9IrmtgFxng5H2oCQEDN+fk0/DtNknD8H6GGHDh1i1KhRF7z37rvvMnjwYKD+qKesrCznUU+PPvroRY96Wr16NTabjaFDh/L0008TExPj0m7r1q3MnTuXnTt3EhUVxU9/+tMLHvW0aNGiBkc9OapsDuce9RQQEMDo0aOZNWuWW0c91dXZKS4+3eTPi4jIxR39/jRPZ32BAcy+fyDdYxo+jS/SWFFRYfj7N32i0usSNGlICZqISMvJWrKDnO+OkXztVUz/oU58kebhboLmc2vQREREmkvRqUo27zgGwJ2pPT0bjMg5lKCJiEi79cmmAgwDbkrsRM+rLZf/gEgrUYImIiLt0vGSKnK2FwFwZ2r8ZVqLtC4laCIi0i4tyynAbhjcmBBFQhdVz8S7KEETEZF252RpFRv/U7/27C5Vz8QLKUETEZF2Z9nmg9TZDa7v2ZFruuooPvE+StBERKRdKS6r5t/fHAFUPRPvpQRNRETalWWbD1BnN+jdPZLr4iI9HY7IBSlBExGRduNUeQ3rVT0TH6AETURE2o3lXxzAVmdwXbcIenVX9Uy8lxI0ERFpF0oraliXW189u3NovMt5yyLeRgmaiIi0Cyu2HMRqs5PY1cL1PTp6OhyRS1KCJiIibV7Z6VrWbjsM1K89U/VMvJ0SNBERafNWfnmQWqud+NgO3Bgf5elwRC5LCZqIiLRp5ZW1fPa1qmfiW5SgiYhIm7bqy0JqrHX0iOlAv8ROng5H5IooQRMRkTarosrKmq8PAXBXak9Vz8RnKEETEZE269OvCqmurSOuczhJ117l6XBErpgSNBERaZMqq62s/qq+enbnLaqeiW8J8HQAItI6SipqWJZzgIpqKwH+fgQG+BF45jWgwavpkvcvdD3A36R/AMWrfPr1IapqbNVgud4AACAASURBVHSNDqN/r2hPhyPSKErQRNqBb/efZPEnO6mosrboOGcTONNFEj/3EsOAc+4F+p99f/a6iQB/PyWKQlWNjdVfFgL11TM//U6Ij1GCJtKGWW12/r5uP6vO/EMV1zmclBuuxlZnx1Znx2qzY62zYzvzarXZsdUZZ14vdv/sq63OcBnP0W+VJ37YcwQ0OkE0ERjgf0WVw4CLft71ekCAn5ICD1rz9SFOV9uI7RTKzb06ezockUZTgibSRh0rriTzX99xoKgcgFEDuvH/jUgkMMC/2cawGwZ1zkTOwGqru2CCZ7WdTfLOfz2bBBqXuX+xzxvY6uwucdnqDGx1dUBds/2sTeHvZ2qWxND5+cb0cU5C2d4SxaoaGyu3HATOVM/82tfPL22DEjSRNsYwDDZtP8b/rtpDjbWO8JBApqT3aZEn2PxMJvwC/Js16WsKwzAaJIYNEsQLXLddJrG8WOXQkZDabHVnPn/2+rnq7AZ1td6RKF58etjUoDJ4oeljl/sXSQwvXF0822drJUqfbzvM6WobMVGhDOoT0ypjijQ3JWgibUhVjY33Vu1m83dFAPTuHsnUO2+gY4cgD0fWskwmE4EB9YmCJxmGQZ3duHSCd07lz1pX17jK4XkJ4oUSR8fruZPPjkSxxhsSxfOmhS+/LvH8pNE1MTz/8/7+fqw4Uz27I6WHqmfis5SgibQR+UfLePNf2zlRUo2fycSEW+MZP0T/QLUmk8lEgH99EhLiwTjOTRQbJnDGFVYWL1U5vPLPG+dkinV24/+1d+fxUdX3/sdfkyEJIWGyYIjsWYAQ1kAF4SbkglQhRAm/KhersokIbcELXGutImChD5YHbWlBMSxabKkLGEVlEQRKJFBQAQWCICRhT1gSZrIvM/P7I2Z0SJQtMDPk/Xw88kjmnO+c+czXCXl7vud8v1htVsoqbn1QbBrkR+9OOnsmnksBTcTD2ex2PtlzktTtmVhtdpqYfBk/pDNtWwa6ujRxkR8GRVez2n4kGF71msQrv/90sPxhQAQYfl9bjF6uf/8iN0oBTcSDmQvLWL7uMIey8gC4JzqUUYkd8G/o7eLKRKoYvbww+igoiVwvBTQRD3Uw8xLLP87AUlyBTwMvfvnzdiR0a645wERE7gAKaCIeptJqI3V7puNC6Jah/oxP7kyLu/xdXJmIiNQVBTQRD5KbXzW3WXZO1dxm/Xu0YHj/tvh4u3aaCxERqVsKaCIeYtfBHN7cdISyciv+DRswZnAMPdprfUERkTuRApqImyspq2TV5qPsPJgDQPtWQTz9UEdCTA1dXJmIiNwqCmgibiw7x8Jraw9xPr8EgwGS4yJ4UEvXiIjc8RTQRNyQzW5n8+enWPPv41htdkJMvjz9UCfatwpydWkiInIbKKCJuBlLUTnL12VwMLNqbrMe7UMZndiBAD/NbSYiUl8ooIm4kUPZeSz/KANzUTneDbx4dEA7+sVqbjMRkfpGAU3EDVRabbz/WSYb/3MSO9DiLn/GJ3eiZWiAq0sTEREXUEATcbHzl0tIWXuIrHMWAPrFNmf4gHb4am4zEZF6SwFNxIX+k5HDmxuPUFpupZFvA0YnduCeDk1dXZaIiLiYApqIC5SWV/Kvzd+y48A5ANq2DGT8Q51oEqi5zURERAFN5LY7kVNAyoeHyMkrxmCAh/4rnIfiwjF6ebm6NBERcRMKaCK3id1u59MvTrP638eotNoJbuzL0w91JLp1sKtLExERN6OAJnIbWIrLeX3dYb4+fgmA7u3uYszgGM1tJiIitVJAE7nFDmfnsfTjDMyF5TQwejH8vrbc16OF5jYTEZEfpYAmcotUWm2s3ZHF+l0nsAPNmjRiQnJnWjXV3GYiIvLTFNBEboGLl0tI+fAQx89WzW2W0K05vxzQDl8fzW0mIiJX55G3jaWmphIdHV3ja8GCBU7tVq9ezcCBA+nSpQtDhgxh27ZtNY5VUFDACy+8QK9evejevTvPPPMM58+fr9Fu7969DB8+nK5du9K/f3+WLl2K3W53amO321m6dCn9+vWja9euDB8+nP3799ftmxe3t+dwLjPe+JzjZy34+TbgV0M7Mzqxg8KZiIhcM48+g7Z8+XIaN27seBwWFub4ed26dbz00ktMmDCB3r17s379eiZOnMiqVauIjY11tJs8eTLHjh1j5syZ+Pr6snDhQsaNG8d7771HgwZV3XPixAnGjh1LXFwckydP5siRIyxYsACj0cjYsWMdx1q2bBl/+9vfePbZZ4mOjmbVqlU8+eSTrF27llatWt2GHhFXKiu38taWo6R9VTW3WVQLE+Mf6sRdQX4urkxERDyNRwe0Tp06ERISUuu+v/3tbyQlJTF58mQAevfuzdGjR3nllVdYtmwZAPv27WPHjh2sWLGC+Ph4ACIiIhg8eDCbNm1i8ODBAKxYsYLg4GD+/Oc/4+PjQ58+fcjLy+O1115jxIgR+Pj4UFZWRkpKCk8++SSjR48G4Gc/+xmDBg1ixYoVzJw589Z2hrjUydyquc3OXSrGACT9VxuS4yM0t5mIiNyQO/Kvx6lTp8jOziYxMdFp++DBg9m1axfl5eUApKWlYTKZiIuLc7SJjIwkJiaGtLQ0x7a0tDQGDBiAj4+P07EsFgv79u0DqoZACwsLnV7Tx8eH+++/3+lYcmex2+1s+fI0s9/8knOXigkK8OHZX3bnFwlRCmciInLDPPovyIMPPkhMTAwDBgwgJSUFq9UKQGZmJlB1NuyHoqKiqKio4NSpU452ERERNaY7iIyMdByjuLiYc+fOERkZWaONwWBwtKv+fmW7qKgozp49S2lpaV28ZXEjhSUVLHrvAKs2H6XSaqNbVBNefrIXMW008ayIiNwcjxziDA0NZdKkSXTr1g2DwcDWrVtZuHAhubm5TJ8+HbPZDIDJZHJ6XvXj6v0Wi8XpGrZqgYGBHDx4EKi6iaC2Y/n4+ODn5+d0LB8fH3x9fWu8pt1ux2w207Ch1lm8Uxw5mc/SjzLILyijgdHA//Rvy4CftdTcZiIiUic8MqD17duXvn37Oh7Hx8fj6+vLypUrmTBhggsrkzud1Wbjwx3ZfLwzGztwd0gjJiR3onVYzaAvIiJyozx6iPOHEhMTsVqtHD58mMDAQOD7s1/VLJaqOamq95tMJgoLC2scy2w2O9pUn2G78ljl5eWUlJQ4Hau8vJyysrIar2kwGBztxHNdNJcw71/7+Oi7cBbftRkzRvdUOBMRkTp3xwS0H6q+Dqz6urBqmZmZeHt7O6a8iIyMJCsrq8Z8ZllZWY5jNGrUiGbNmtU4VvXzqttVf8/Kyqrxms2bN9fwpof74pvzzHz9c46dNuPna2T8kE48OThGc5uJiMgtcccEtPXr12M0GunYsSOtWrUiPDycjRs31mjTp08fx92YCQkJmM1mdu3a5WiTlZVFRkYGCQkJjm0JCQls2bKFiooKp2OZTCa6d+8OQI8ePQgICGDDhg2ONhUVFWzatMnpWOJZyiqsvLnxG1794CDFZZVENjcxY0wv7u0YdvUni4iI3CDjTA+coGvs2LHk5uZSWFjIiRMneP3111m1ahUjRoxg0KBBAAQHB7N48WJsNhtQNYnstm3bmDNnDs2aNQOgWbNm7N+/nzVr1hAWFsapU6eYMWMGoaGhvPDCC3h9N01CZGQkb7zxBt988w1BQUFs3bqVxYsXM2nSJHr27AlAgwYNMBgMpKSk4O/vT0lJCX/60584evQo8+fPv6khTrvdTklJxdUbSp06faGQv7zzFQcy8zAAg3u34akHO9K4kc9VnysiIvWbn58PXl43fuOYwX7l+J4HmD17Np999hk5OTnYbDbCw8MZNmwYI0aMcLqLbvXq1SxbtoyzZ88SERHB1KlT6d+/v9OxCgoKmDNnDps3b6ayspL4+HimTZvmtCoBVM1zNnfuXA4fPkxISAiPP/4448aNc3q96qWe/vWvf5GXl0dMTAy///3vHWfZbpTVaiMvr+imjiHXzm638+99Z3h76zEqKm0E+vvw1EMd6RRe+6TIIiIiVwoJ8cdovPGBSo8MaPWNAtrtU1hSwd83fMPeoxcA6BrVhCeTYjDprJmIiFyHmw1oHjnNhsitcPTUZZZ+dIg8SxlGLwPD+rfl5/e0xEtzm4mIyG2mgCb1ns1m56Od2XyYnoXdDmHBfkxI7kybuzV9hoiIuIYCmtRreZZSln6UwdFTlwGI63w3jz/QnoY++tUQERHX0V8hqbcOZF5i6YeHKCqtpKGPkREDo+nT6W5XlyUiIqKAJvXT+cslvPrBQcrKrUQ0a8z4IZ1oGtzI1WWJiIgACmhST/1j4zeUlVtp1zKQ3/6yOw1u4k4bERGRuqa/SlLvHMrO41B2PkYvA6MGRSuciYiI29FfJqlXbHY7q7cdA6B/9xY0vyvAxRWJiIjUpIAm9crujFxO5hbS0MfIg3Hhri5HRESkVgpoUm9UVNpI3Z4JVK2rqdUBRETEXSmgSb2xde9pLllKCQrw4f6erVxdjoiIyI9SQJMbYrPb2Xv0ApbicleXck2KSiv4eGc2AEP7RuLrbXRtQSIiIj9BAU1uyPZ9Z1icesAxZOju1u86QVFpJS3u8ieuiyajFRER96aAJjdk16FcAHLyil1cydVdMpey+YvTADzcLwqjlz72IiLi3vSXSq5bnqWUY2fMABR4wBDnB59lUmm1Ed0qiG5RTVxdjoiIyFUpoMl1++Kb846fLUXuHdBO5haw82AOAMP6t8VgMLi4IhERkatTQJPr9vkPAlpRaSWVVpsLq/lpa7Yfxw707NCUyOYmV5cjIiJyTRTQ5LpcNJdw/KwFA1B9MqqguMKlNf2YjOw8DmbmYfQy8PB/R7q6HBERkWumgCbX5YtvLgDQvlWQY6JXd7wOrWpJp+MA9OvegqbBjVxckYiIyLVTQJPrUj282TOmKY2/C2juOBfanoxcTuQW0NDHyENa0klERDyMAppcs4uXS8g6Z8FggJ+1D8Xk7w1AQZF7DXFWVNpITauany1RSzqJiIgHUkCTa/b5kaqzZ9GtgggM8HUEH7Ob3cm5be9pLpqrlnR6QEs6iYiIB1JAk2v2+eHq4c0wAMcQpztdg1ZcWsFHWtJJREQ8nAKaXJPzl0vIzilwDG8CjiHOW3UNms1up6Ss8rqes+4/VUs6NdeSTiIi4sEU0MRJcWkFew7nYrU5z222J6NqaafoVkGY/KvOnH1/F+etuQbtnS3HeOavn7Hv6IVrap9nKWXz51VLOj2iJZ1ERMSD6S+YONhsdhau/prX1h7i3/vOOu374rvrz3pEhzq2Nfa/ddegnb9cwpYvT2O12Vn5yREKS64eAt//bkmn9lrSSUREPJwCmjhs+vyUY43NA5mXHNvP5xdzMrcQgwFi297l2H4r50H7eGc2NrsdqFpO6p0t3/5k+1PnC9l5oGpJp//Rkk4iIuLhFNAEgDMXixxTUwAcOXXZsYRT9dxnEc1MjhsDAEyNvrsGragC+3dhqi6cv1ziCFuPDmiHAUg/mMPBH4TGK635d9WSTvdoSScREbkDKKAJVpuN19dlUGm10TkyhAA/b8rKrWSfKwC+D2gdw4Odnlc9xFlptVFabq2zej5Orzp71jkyhAd6tuLn91RNlbFy4ze13jSQkZ3HgcxLWtJJRETuGApowob/nCTrXAGNfBswJjGGDm2qgljGiTxy86qGN70M0KG1c0Dz9Tbi61M1jYWljq5DO59fzM6DVWfPkuMiAPhFQiR3BTbkkqWM1O2ZTu2vXNIpTEs6iYjIHUABrZ47db6QtTuyAHjs/nYEN/Yl5ruA9s2JfPZ8d/asQ5tgGjVsUOP5jmHOOroO7eOdJxxnz6JaBALg62NkdGIHALbuPc3RU5cd7fcc1pJOIiJy51FAq8eKSitY+uEhrDY73dvdRZ9OVfOGdfwuoB07Y+Y/h6rOZlXPfXalAL+qgPb54fOUll/fnGVXcjp7Fh/htK9jeAh9uzbDDvx9wzdUVFqrlnTariWdRETkzlPzlIjUC6XllSx89yvOXCwi0N+HkQOjHXc+Ng32I7ixL/kFZZy7VIzRy0CP9qHY7GD0cr47Miy4EVnnCvj0y9OkfX2Wnh2a0i3qLjqGB9OoobfjtQ5m5nH4ZD4Vld/Nr2av/vb9zQWnLxRhs9vpEtmEqOaBNWoefl9bvs68RE5eMR+mZ9O4kQ8XzaUEBvjwwD1a0klERO4cCmj11Cd7TnH8rIVGDRvwf4/GEhjg69hnMBjo2CaY9O/OZsWEBzvt/6ERA6Np1qQR2786S56ljPQDOaQfyMHLYCCqhYlGvg3IOPGDYHYNhsSH17q9UUNvRj4QzaLUA2z4z0nH9W//r2+k42cREZE7gQJaPRXTJohjp0NI7htOy9CAmvvDvw9oPTs0/dHj+Pk24KG4CJL+K5wjJy/z1bGLHMi8xLlLxXx72uxoFxrUkNi2oY7loapVn7WrPi/X7C7/Ws+eVevePpSeHZry+TfnKSnTkk4iInJnUkCrp9q3Cub/Hg3+0f0xbUIwehnw+m5482q8DAZi2gQT0yaYRwe04+LlEg5k5VFaVknnyCa0DPWvs8ljH7u/PRnZeRSVVvLIf2tJJxERufMY7HU5w6jcElarjby8otv+uoez8/BuYKRtyx8/o+UqZy8WcdFcQteou67eWERE5DYLCfHHaLzxEwgKaB7AVQFNREREbszNBjSNDYmIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEzCmgiIiIibkYBTURERMTNKKDVsePHjzNmzBhiY2OJi4tj/vz5lJeXu7osERER8SBai7MOmc1mRo0aRXh4OIsWLSI3N5e5c+dSWlrK9OnTXV2eiIiIeAgFtDr09ttvU1RUxOLFiwkKCgLAarXy8ssvM378eMLCwlxcoYiIiHgCDXHWobS0NPr06eMIZwCJiYnYbDbS09NdWJmIiIh4EgW0OpSZmUlkZKTTNpPJRGhoKJmZmS6qSkRERDyNhjjrkMViwWQy1dgeGBiI2Wy+4eN6eRkICfG/mdJERETkNvLyMtzU8xXQPIDBYMBovLn/0CIiIuI5NMRZh0wmEwUFBTW2m81mAgMDXVCRiIiIeCIFtDoUGRlZ41qzgoICLly4UOPaNBEREZEfo4BWhxISEti5cycWi8WxbePGjXh5eREXF+fCykRERMSTGOx2u93VRdwpzGYzSUlJREREMH78eMdEtQ899JAmqhUREZFrpoBWx44fP86sWbPYt28f/v7+JCcnM2XKFHx8fFxdmoiIiHgIBTQRERERN6Nr0ERERETcjAKaiIiIiJtRQBMRERFxMwpoIiIiIm5GAU1ERETEzSigiYiIiLgZBTQRERERN6OA5kGOHz/OmDFjiI2NJS4ujvnz51NeXu7qstzSiRMnmD59OsnJyXTs2JEHH3yw1narV69m4MCBdOnShSFDhrBt27YabQoKCnjhhRfo1asX3bt355lnnuH8+fO3+i24nQ0bNvCrX/2KhIQEYmNjSU5OZs2aNVw5laL69Npt376dJ554gt69e9O5c2cGDBjAnDlzKCgocGq3detWhgwZQpcuXRg4cCDvvfdejWOVl5czb9484uLiiI2NZcyYMTXWBq6PioqKSEhIIDo6mgMHDjjt02f12qSmphIdHV3ja8GCBU7t1J91SwHNQ5jNZkaNGkVFRQWLFi1iypQpvPvuu8ydO9fVpbmlb7/9lu3bt9OmTRuioqJqbbNu3TpeeuklEhMTWbZsGbGxsUycOJH9+/c7tZs8eTLp6enMnDmTBQsWkJWVxbhx46isrLwdb8Vt/P3vf8fPz4/nn3+eJUuWkJCQwEsvvcQrr7ziaKM+vT6XL1+ma9euvPzyy6xYsYIxY8bwwQcf8L//+7+ONl988QUTJ04kNjaWZcuWkZiYyIsvvsjGjRudjjV79mxWr17NlClTWLRoEeXl5YwePbpG2KtvXn31VaxWa43t+qxev+XLl/POO+84vh5//HHHPvXnLWAXj/Daa6/ZY2Nj7fn5+Y5tb7/9tj0mJsaek5Pjwsrck9Vqdfz8u9/9zp6UlFSjzQMPPGCfOnWq07bhw4fbn3rqKcfjvXv32tu3b2//7LPPHNuOHz9uj46Otq9bt+4WVO6+Ll26VGPbtGnT7D169HD0t/r05r3zzjv29u3bO36vn3zySfvw4cOd2kydOtWemJjoeHzu3Dl7TEyM/e2333Zsy8/Pt8fGxtqXLl16ewp3Q8eOHbPHxsba33rrLXv79u3tX3/9tWOfPqvX7r333rO3b9++1n8Dqqk/657OoHmItLQ0+vTpQ1BQkGNbYmIiNpuN9PR0F1bmnry8fvqjferUKbKzs0lMTHTaPnjwYHbt2uUYOk5LS8NkMhEXF+doExkZSUxMDGlpaXVfuBsLCQmpsS0mJobCwkKKi4vVp3Wk+ne8oqKC8vJydu/ezaBBg5zaDB48mOPHj3P69GkAduzYgc1mc2oXFBREXFxcve7T2bNn8+ijjxIREeG0XZ/VuqX+vDUU0DxEZmYmkZGRTttMJhOhoaG6zuQGVPfZlf9wR0VFUVFRwalTpxztIiIiMBgMTu0iIyPV78CXX35JWFgYAQEB6tObYLVaKSsr49ChQ7zyyivcd999tGzZkpMnT1JRUVHjd7962L66vzIzM2nSpAmBgYE12tXXPt24cSNHjx7lN7/5TY19+qzemAcffJCYmBgGDBhASkqKY+hY/XlrNHB1AXJtLBYLJpOpxvbAwEDMZrMLKvJs1X12ZZ9WP67eb7FYaNy4cY3nBwYGcvDgwVtcpXv74osvWL9+Pb/73e8A9enN6N+/P7m5uQD07duXP/3pT8DN96nJZKqX/z6UlJQwd+5cpkyZQkBAQI39+qxen9DQUCZNmkS3bt0wGAxs3bqVhQsXkpuby/Tp09Wft4gCmohct5ycHKZMmcK9997LyJEjXV2Ox1u6dCklJSUcO3aMJUuWMGHCBN544w1Xl+WxlixZQpMmTXj44YddXcodoW/fvvTt29fxOD4+Hl9fX1auXMmECRNcWNmdTUOcHsJkMtV6N5bZbK4xrCFXV91nV/apxWJx2m8ymSgsLKzx/Prc7xaLhXHjxhEUFMSiRYsc1/upT29chw4d6N69O8OGDePVV19l9+7dbN68+ab71GKx1Ls+PXPmDK+//jrPPPMMBQUFWCwWiouLASguLqaoqEif1TqQmJiI1Wrl8OHD6s9bRAHNQ9Q2Rl9QUMCFCxdqXJ8iV1fdZ1f2aWZmJt7e3rRq1crRLisrq8ZcX1lZWfWy30tLSxk/fjwFBQUsX77cabhCfVo3oqOj8fb25uTJk7Ru3Rpvb+9a+xS+7/PIyEguXrxYYziztmtX73SnT5+moqKCp59+mp49e9KzZ0/HWZ6RI0cyZswYfVbrmPrz1lBA8xAJCQns3LnT8X8kUHURrJeXl9MdMXJtWrVqRXh4eI25pNavX0+fPn3w8fEBqvrdbDaza9cuR5usrCwyMjJISEi4rTW7WmVlJZMnTyYzM5Ply5cTFhbmtF99Wje++uorKioqaNmyJT4+Ptx777188sknTm3Wr19PVFQULVu2BKqGnLy8vNi0aZOjjdlsZseOHfWuT2NiYnjzzTedvn7/+98D8PLLLzNjxgx9VuvA+vXrMRqNdOzYUf15ixhnzpw509VFyNW1a9eO1atXs3PnTpo2bcrnn3/OvHnzePjhh0lKSnJ1eW6npKSELVu2cOzYMdLT07l48SJ33303x44dIyQkBD8/P4KDg1m8eDE2mw2AZcuWsW3bNubMmUOzZs0AaNasGfv372fNmjWEhYVx6tQpZsyYQWhoKC+88MJVp/O4k8yYMYN169YxefJkmjRpQk5OjuMrJCQEo9GoPr1OEydO5OTJkxQUFJCTk8Onn37KH//4R1q1asXzzz+P0WikRYsWLFmyhAsXLuDn50dqaiqrVq1i+vTptGvXDoCAgAByc3NZuXIlTZo0IS8vj1mzZlFSUsKcOXPw9fV18Tu9fXx9fWnZsqXTV1lZGe+//z4TJ06kc+fOAPqsXoexY8eSm5tLYWEhJ06c4PXXX2fVqlWMGDHCMbWL+rPuGexXnmsUt3X8+HFmzZrFvn378Pf3Jzk5mSlTpjj+70S+d/r0aQYMGFDrvjfffJN7770XqFqaZNmyZZw9e5aIiAimTp1K//79ndoXFBQwZ84cNm/eTGVlJfHx8UybNq3GGaQ73X333ceZM2dq3bdlyxbH2Rz16bVbunQp69ev5+TJk9jtdlq0aMH999/P2LFjne4+3LJlCwsXLiQrK4vmzZvz9NNP88gjjzgdq7y8nL/85S+sXbuWoqIievTowbRp0350JY36ZPfu3YwcOZI1a9bQpUsXx3Z9Vq/N7Nmz+eyzz8jJycFmsxEeHs6wYcMYMWKE05QZ6s+6pYAmIiIi4mZ0PlFERETEzSigiYiIiLgZBTQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRMSDbN++nUWLFrm6DBG5xRTQREQ8yPbt21m8eLGryxCRW0wBTURERMTNaC1OEZFanDlzhmXLlrFr1y7OnTuHn58f9957L88995xjYXiAiooKUlJS+PDDDzl37hyNGjUiMjKSiRMnEhcXB8CFCxf485//THp6Onl5eQQFBdGlSxdefPFFp2Nt376dlJQUMjIyMBgM9OzZk9/+9re0a9cOgOeff57333+/Rq1HjhwBYN26daxYsYKsrCwMBgMtWrTgkUceYdSoUbeyq0TkFmjg6gJERNzRgQMH2LdvH0lJSdx9992cOXOGt956i5EjR7Ju3Tr8/PwAWLx4MSkpKQwbNoyuXbtSWFjIwYMHOXTokCOgTZo0iWPHjvHEE0/QokUL8vLySE9P59y5c46AoP6WowAABNFJREFU9sEHH/D8888THx/Ps88+S0lJCW+99RaPPfYY77//Pi1btmT48OGcP3+e9PR05s+f71Rveno6U6dOpU+fPjz77LMAZGZmsnfvXgU0EQ+kM2giIrUoLS2lYcOGTtv279/P8OHDmTdvHkOHDgUgOTmZu+++m5SUlFqPY7FY6NmzJ8899xxjx46ttU1RURH9+vVj0KBBzJo1y7H94sWLDBo0iMTERMf2P/zhD6xatcpx1qzaH//4R1JTU9mzZw9Go/GG37eIuAddgyYiUosfhrOKigry8/Np3bo1JpOJjIwMxz6TycS3335Ldnb2jx7H29ubPXv2YDaba22zc+dOLBYLSUlJ5OXlOb68vLzo1q0bu3fvvmq9JpOJkpIS0tPTr++Niohb0hCniEgtSktLSUlJITU1ldzcXH442FBQUOD4+ZlnnuHXv/41AwcOpH379sTHx5OcnEyHDh0A8PHx4dlnn2XevHnExcXRrVs3+vXrx9ChQwkNDQVwhLsfG4oMCAi4ar2PPfYYGzZsYNy4cYSFhREXF0diYiIJCQk32gUi4kIKaCIitZg1axapqamMGjWK2NhYGjdujMFgYMqUKU5hrWfPnmzevJktW7aQnp7OmjVrWLlyJS+//DLDhg0DYPTo0dx33318+umn7Nixg7/+9a8sXbqUlStX0rFjR8fx5s+f7whtP3QtQ5ZNmjThgw8+YMeOHaSlpZGWlkZqaipDhw5l3rx5ddQrInK76Bo0EZFa3HPPPdx///3MmTPHsa2srIzu3bszZMgQ5s6dW+vzioqKeOKJJ7h06RJpaWm1tsnOzmbo0KH8/Oc/Z8GCBWzYsIHJkyezYsUK4uPjf7KuWbNm8c9//rPGNWhXstlszJw5k3feeYdNmzbRpk2bq7xjEXEnugZNRKQWtZ21+sc//oHVanXalp+f7/TY39+f1q1bU15eDkBJSQllZWVObVq3bo2/v7+jTd++fQkICCAlJYWKiooar5uXl+f4ufruUYvF8pN1eHl5ER0dDeB4HRHxHBriFBGpRb9+/Vi7di0BAQG0bduW/fv3s3PnToKCgpzaJSUl0atXLzp16kRQUBAHDhzgk08+4YknngCqzpaNHj2aQYMG0bZtW4xGI59++ikXL14kKSkJqLrGbObMmTz33HP84he/YPDgwYSEhHD27Fm2b99Ojx49mD59OgCdOnUCYPbs2cTHx2M0GklKSmLatGmYzWZ69+5NWFgYZ8+e5Z///CcxMTFERUXdxp4TkbqgIU4RkVpYLBbmzJnDtm3bKCsro0ePHrz44os89dRT9OrVyzHEuWTJErZu3Up2djbl5eU0b96c5ORkxo4di7e3N/n5+SxatIhdu3aRk5OD0WgkMjKSMWPGkJiY6PSau3fvZunSpXz11VeUl5cTFhbGPffcw+OPP07nzp0BsFqtzJkzh3Xr1pGfn4/dbufIkSN88sknvPvuuxw+fBiLxUJoaCh9+/Zl0qRJtV7XJiLuTQFNRERExM3oGjQRERERN6OAJiIiIuJmFNBERERE3IwCmoiIiIibUUATERERcTMKaCIiIiJuRgFNRERExM0ooImIiIi4GQU0ERERETejgCYiIiLiZhTQRERERNyMApqIiIiIm1FAExEREXEz/x++FluwZ+MyaAAAAABJRU5ErkJggg== diff --git a/plugins/matplotlib/requirements.txt b/plugins/matplotlib/requirements.txt deleted file mode 100755 index e7568116c0..0000000000 --- a/plugins/matplotlib/requirements.txt +++ /dev/null @@ -1,14 +0,0 @@ -# List third-party dependencies here, separated by newlines. -# All dependencies must be version-pinned, eg. requests==1.2.0 -# See: https://pip.pypa.io/en/stable/user_guide/#requirements-files -cycler==0.11.0 -kiwisolver==1.4.4 -matplotlib==3.7.1 -numpy==1.24.3 -pandas==2.0.1 -pyparsing==2.3.1 -python-dateutil==2.8.2 -pytz==2023.3 -scipy==1.10.1 -seaborn==0.12.2 -six==1.16.0 diff --git a/plugins/matplotlib/setup.py b/plugins/matplotlib/setup.py deleted file mode 100755 index b3f4a4d8d5..0000000000 --- a/plugins/matplotlib/setup.py +++ /dev/null @@ -1,14 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT -from setuptools import setup, find_packages - - -setup(name="matplotlib-rapid7-plugin", - version="1.0.3", - description="Provides graphing capability of base64 encoded CSV data using Matplotlib, NumPy, Pandas, and Seaborn", - author="rapid7", - author_email="", - url="", - packages=find_packages(), - install_requires=['insightconnect-plugin-runtime'], # Add third-party dependencies to requirements.txt, not here! - scripts=['bin/komand_matplotlib'] - ) diff --git a/plugins/matplotlib/unit_test/__init__.py b/plugins/matplotlib/unit_test/__init__.py deleted file mode 100644 index 797e426edf..0000000000 --- a/plugins/matplotlib/unit_test/__init__.py +++ /dev/null @@ -1 +0,0 @@ -# GENERATED BY INSIGHT-PLUGIN - DO NOT EDIT diff --git a/plugins/matplotlib/unit_test/test_create_distribution_plot.py b/plugins/matplotlib/unit_test/test_create_distribution_plot.py deleted file mode 100644 index 92552af832..0000000000 --- a/plugins/matplotlib/unit_test/test_create_distribution_plot.py +++ /dev/null @@ -1,20 +0,0 @@ -import sys -import os -sys.path.append(os.path.abspath('../')) - -from unittest import TestCase -from icon_matplotlib.connection.connection import Connection -from icon_matplotlib.actions.create_distribution_plot import CreateDistributionPlot -import json -import logging - - -class TestCreateDistributionPlot(TestCase): - def test_create_distribution_plot(self): - """ - DO NOT USE PRODUCTION/SENSITIVE DATA FOR UNIT TESTS - - TODO: Implement test cases here - """ - - self.fail("Unimplemented Test Case") \ No newline at end of file diff --git a/plugins/matplotlib/unit_test/test_create_joint_plot.py b/plugins/matplotlib/unit_test/test_create_joint_plot.py deleted file mode 100644 index 563a185def..0000000000 --- a/plugins/matplotlib/unit_test/test_create_joint_plot.py +++ /dev/null @@ -1,20 +0,0 @@ -import sys -import os -sys.path.append(os.path.abspath('../')) - -from unittest import TestCase -from icon_matplotlib.connection.connection import Connection -from icon_matplotlib.actions.create_joint_plot import CreateJointPlot -import json -import logging - - -class TestCreateJointPlot(TestCase): - def test_create_joint_plot(self): - """ - DO NOT USE PRODUCTION/SENSITIVE DATA FOR UNIT TESTS - - TODO: Implement test cases here - """ - - self.fail("Unimplemented Test Case") \ No newline at end of file diff --git a/plugins/matplotlib/unit_test/test_create_line_plot.py b/plugins/matplotlib/unit_test/test_create_line_plot.py deleted file mode 100644 index 9dc15da8f4..0000000000 --- a/plugins/matplotlib/unit_test/test_create_line_plot.py +++ /dev/null @@ -1,20 +0,0 @@ -import sys -import os -sys.path.append(os.path.abspath('../')) - -from unittest import TestCase -from icon_matplotlib.connection.connection import Connection -from icon_matplotlib.actions.create_line_plot import CreateLinePlot -import json -import logging - - -class TestCreateLinePlot(TestCase): - def test_create_line_plot(self): - """ - DO NOT USE PRODUCTION/SENSITIVE DATA FOR UNIT TESTS - - TODO: Implement test cases here - """ - - self.fail("Unimplemented Test Case") \ No newline at end of file diff --git a/plugins/matplotlib/unit_test/test_create_pair_plot.py b/plugins/matplotlib/unit_test/test_create_pair_plot.py deleted file mode 100644 index 16d98fc650..0000000000 --- a/plugins/matplotlib/unit_test/test_create_pair_plot.py +++ /dev/null @@ -1,20 +0,0 @@ -import sys -import os -sys.path.append(os.path.abspath('../')) - -from unittest import TestCase -from icon_matplotlib.connection.connection import Connection -from icon_matplotlib.actions.create_pair_plot import CreatePairPlot -import json -import logging - - -class TestCreatePairPlot(TestCase): - def test_create_pair_plot(self): - """ - DO NOT USE PRODUCTION/SENSITIVE DATA FOR UNIT TESTS - - TODO: Implement test cases here - """ - - self.fail("Unimplemented Test Case") \ No newline at end of file diff --git a/plugins/matplotlib/unit_test/test_create_scatter_plot.py b/plugins/matplotlib/unit_test/test_create_scatter_plot.py deleted file mode 100644 index 7feb200dce..0000000000 --- a/plugins/matplotlib/unit_test/test_create_scatter_plot.py +++ /dev/null @@ -1,20 +0,0 @@ -import sys -import os -sys.path.append(os.path.abspath('../')) - -from unittest import TestCase -from icon_matplotlib.connection.connection import Connection -from icon_matplotlib.actions.create_scatter_plot import CreateScatterPlot -import json -import logging - - -class TestCreateScatterPlot(TestCase): - def test_create_scatter_plot(self): - """ - DO NOT USE PRODUCTION/SENSITIVE DATA FOR UNIT TESTS - - TODO: Implement test cases here - """ - - self.fail("Unimplemented Test Case") \ No newline at end of file