From 0d85c12eafbb53e31e7414039f21eea4d3b68a1d Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Fri, 26 Jul 2024 10:30:03 -0400 Subject: [PATCH 1/7] Cache the get_volume call from Serie. Avoid repeat processing. --- sybil/model.py | 2 -- sybil/serie.py | 2 ++ 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/sybil/model.py b/sybil/model.py index 10fb857..c6899ac 100644 --- a/sybil/model.py +++ b/sybil/model.py @@ -227,8 +227,6 @@ def _calibrate(self, scores: np.ndarray) -> np.ndarray: Parameters ---------- - calibrator: Optional[dict] - Dictionary of sklearn.calibration.CalibratedClassifierCV for each year, otherwise None. scores: np.ndarray risk scores as numpy array diff --git a/sybil/serie.py b/sybil/serie.py index 6151313..e159b2b 100644 --- a/sybil/serie.py +++ b/sybil/serie.py @@ -1,3 +1,4 @@ +import functools from typing import List, Optional, NamedTuple, Literal from argparse import Namespace @@ -137,6 +138,7 @@ def get_raw_images(self) -> List[np.ndarray]: images = [i["input"] for i in input_dicts] return images + @functools.cache def get_volume(self) -> torch.Tensor: """ Load loaded 3D CT volume From 81a412cf51447b0a629feb455a2e8018883810f6 Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Mon, 29 Jul 2024 16:28:03 -0400 Subject: [PATCH 2/7] Bugfix sybil-predict Properly set --return-attentions when --write-attention-images is set. --- sybil/predict.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/sybil/predict.py b/sybil/predict.py index abc2679..71967c5 100644 --- a/sybil/predict.py +++ b/sybil/predict.py @@ -49,7 +49,6 @@ def _get_parser(): help="Generate images with attention overlap. Sets --return-attentions (if not already set).", ) - parser.add_argument( "--file-type", default="auto", @@ -90,6 +89,8 @@ def predict( ): logger = sybil.utils.logging_utils.get_logger() + return_attentions |= write_attention_images + input_files = os.listdir(image_dir) input_files = [os.path.join(image_dir, x) for x in input_files if not x.startswith(".")] input_files = [x for x in input_files if os.path.isfile(x)] From 8318a9b7f9fc91ad06cb9da8ae28cb7159df41e3 Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Mon, 29 Jul 2024 14:36:13 -0400 Subject: [PATCH 3/7] Add custom calibrator. The calibrator mimics the predict_proba function of the scikit-learn calibrator exactly, which is all we need for inference. This way I can get rid of the scikit-learn dependency. Add regression test for the calibrator(s). Add "prob" output from Sybil (sigmoid of "logit") which will make downstream processing easier. Switch Sybil class to using custom calibrator. --- sybil/model.py | 10 +-- sybil/models/calibrator.py | 168 +++++++++++++++++++++++++++++++++++ sybil/models/sybil.py | 13 +++ sybil/serie.py | 2 +- tests/regression_test.py | 177 +++++++++++++++++++++++-------------- 5 files changed, 298 insertions(+), 72 deletions(-) create mode 100644 sybil/models/calibrator.py diff --git a/sybil/model.py b/sybil/model.py index c6899ac..d5cfc80 100644 --- a/sybil/model.py +++ b/sybil/model.py @@ -7,10 +7,10 @@ import torch import numpy as np -import pickle from sybil.serie import Serie from sybil.models.sybil import SybilNet +from sybil.models.calibrator import SimpleClassifierGroup from sybil.utils.logging_utils import get_logger from sybil.utils.device_utils import get_default_device, get_most_free_gpu, get_device_mem_info from sybil.utils.metrics import get_survival_metrics @@ -91,7 +91,7 @@ def download_sybil(name, cache) -> Tuple[List[str], str]: # Download models model_files = NAME_TO_FILE[name] checkpoints = model_files["checkpoint"] - download_calib_path = os.path.join(cache, f"{name}.p") + download_calib_path = os.path.join(cache, f"{name}_simple_calibrator.json") have_all_files = os.path.exists(download_calib_path) download_model_paths = [] @@ -187,7 +187,7 @@ def __init__( self.to(self.device) if calibrator_path is not None: - self.calibrator = pickle.load(open(calibrator_path, "rb")) + self.calibrator = SimpleClassifierGroup.from_json_grouped(calibrator_path) else: self.calibrator = None @@ -240,9 +240,7 @@ def _calibrate(self, scores: np.ndarray) -> np.ndarray: calibrated_scores = [] for YEAR in range(scores.shape[1]): probs = scores[:, YEAR].reshape(-1, 1) - probs = self.calibrator["Year{}".format(YEAR + 1)].predict_proba(probs)[ - :, 1 - ] + probs = self.calibrator["Year{}".format(YEAR + 1)].predict_proba(probs)[:, -1] calibrated_scores.append(probs) return np.stack(calibrated_scores, axis=1) diff --git a/sybil/models/calibrator.py b/sybil/models/calibrator.py new file mode 100644 index 0000000..dac3c15 --- /dev/null +++ b/sybil/models/calibrator.py @@ -0,0 +1,168 @@ +import json +import os +from typing import List + +import numpy as np + +""" +Calibrator for Sybil prediction models. + +We calibrate probabilities using isotonic regression. +Previously this was done with scikit-learn, here we use a custom implementation to avoid versioning issues. +""" + + +class SimpleClassifierGroup: + """ + A class to represent a calibrator for prediction models. + Behavior and coefficients are taken from the sklearn.calibration.CalibratedClassifierCV class. + Make a custom class to avoid sklearn versioning issues. + """ + + def __init__(self, calibrators: List["SimpleIsotonicRegressor"]): + self.calibrators = calibrators + + def predict_proba(self, X, expand=False): + """ + Predict class probabilities for X. + + Parameters + ---------- + X : array-like of shape (n_probabilities,) + The input probabilities to recalibrate. + expand : bool, default=False + Whether to return the probabilities for each class separately. + This is intended for binary classification which can be done in 1D, + expand=True will return a 2D array with shape (n_probabilities, 2). + + Returns + ------- + proba : ndarray of shape (n_samples, n_classes) + The class probabilities of the input samples. Classes are ordered by + lexicographic order. + """ + proba = np.array([calibrator.transform(X) for calibrator in self.calibrators]) + pos_prob = np.mean(proba, axis=0) + if expand and len(self.calibrators) == 1: + return np.array([1.-pos_prob, pos_prob]) + else: + return pos_prob + + def to_json(self): + return [calibrator.to_json() for calibrator in self.calibrators] + + @classmethod + def from_json(cls, json_list): + return cls([SimpleIsotonicRegressor.from_json(json_dict) for json_dict in json_list]) + + @classmethod + def from_json_grouped(cls, json_path): + """ + We store calibrators in a diction of {year (str): [calibrators]}. + This is a convenience method to load that dictionary from a file path. + """ + json_dict = json.load(open(json_path, "r")) + output_dict = {key: cls.from_json(json_list) for key, json_list in json_dict.items()} + return output_dict + + +class SimpleIsotonicRegressor: + def __init__(self, coef, intercept, x0, y0, x_min=-np.inf, x_max=np.inf): + self.coef = coef + self.intercept = intercept + self.x0 = x0 + self.y0 = y0 + self.x_min = x_min + self.x_max = x_max + + def transform(self, X): + T = X + T = T @ self.coef + self.intercept + T = np.clip(T, self.x_min, self.x_max) + return np.interp(T, self.x0, self.y0) + + @classmethod + def from_classifier(cls, classifer: "_CalibratedClassifier"): + assert len(classifer.calibrators) == 1, "Only one calibrator per classifier is supported." + calibrator = classifer.calibrators[0] + return cls(classifer.base_estimator.coef_, classifer.base_estimator.intercept_, + calibrator.f_.x, calibrator.f_.y, calibrator.X_min_, calibrator.X_max_) + + def to_json(self): + return { + "coef": self.coef.tolist(), + "intercept": self.intercept.tolist(), + "x0": self.x0.tolist(), + "y0": self.y0.tolist(), + "x_min": self.x_min, + "x_max": self.x_max + } + + @classmethod + def from_json(cls, json_dict): + return cls( + np.array(json_dict["coef"]), + np.array(json_dict["intercept"]), + np.array(json_dict["x0"]), + np.array(json_dict["y0"]), + json_dict["x_min"], + json_dict["x_max"] + ) + + def __repr__(self): + return f"SimpleIsotonicRegressor(x={self.x0}, y={self.y0})" + + +def export_calibrator(input_path, output_path): + import pickle + import sklearn + sk_cal_dict = pickle.load(open(input_path, "rb")) + simple_cal_dict = dict() + for key, cal in sk_cal_dict.items(): + calibrators = [SimpleIsotonicRegressor.from_classifier(classifier) for classifier in cal.calibrated_classifiers_] + simple_cal_dict[key] = SimpleClassifierGroup(calibrators).to_json() + + json.dump(simple_cal_dict, open(output_path, "w"), indent=2) + + +def export_by_name(base_dir, model_name, overwrite=False): + sk_input_path = os.path.expanduser(f"{base_dir}/{model_name}.p") + simple_output_path = os.path.expanduser(f"{base_dir}/{model_name}_simple_calibrator.json") + + version = "1.4.0" + scores_output_path = f"{base_dir}/{model_name}_v{version}_calibrations.json" + + if overwrite or not os.path.exists(simple_output_path): + run_test_calibrations(sk_input_path, scores_output_path) + + if overwrite or not os.path.exists(simple_output_path): + export_calibrator(sk_input_path, simple_output_path) + + +def export_all_default_calibrators(base_dir="~/.sybil", overwrite=False): + base_dir = os.path.expanduser(base_dir) + model_names = ["sybil_1", "sybil_2", "sybil_3", "sybil_4", "sybil_5", "sybil_ensemble"] + for model_name in model_names: + export_by_name(base_dir, model_name, overwrite=overwrite) + + +def run_test_calibrations(sk_input_path, scores_output_path, overwrite=False): + """ + For regression testing. Output calibrated probabilities for a range of input probabilities. + """ + import pickle + sk_cal_dict = pickle.load(open(sk_input_path, "rb")) + + test_probs = np.arange(0, 1, 0.001).reshape(-1, 1) + + output_dict = {"x": test_probs.flatten().tolist()} + for key, model in sk_cal_dict.items(): + output_dict[key] = model.predict_proba(test_probs)[:, -1].flatten().tolist() + + if overwrite or not os.path.exists(scores_output_path): + with open(scores_output_path, "w") as f: + json.dump(output_dict, f, indent=2) + + +if __name__ == "__main__": + export_all_default_calibrators(overwrite=False) diff --git a/sybil/models/sybil.py b/sybil/models/sybil.py index edd2187..f5bf155 100644 --- a/sybil/models/sybil.py +++ b/sybil/models/sybil.py @@ -1,3 +1,4 @@ +import torch import torch.nn as nn import torchvision from sybil.models.cumulative_probability_layer import Cumulative_Probability_Layer @@ -29,6 +30,7 @@ def forward(self, x, batch=None): pool_output = self.aggregate_and_classify(x) output["activ"] = x output.update(pool_output) + output["prob"] = pool_output["logit"].sigmoid() return output @@ -41,6 +43,17 @@ def aggregate_and_classify(self, x): return pool_output + @staticmethod + def load(path): + checkpoint = torch.load(path, map_location="cpu") + args = checkpoint["args"] + model = SybilNet(args) + + # Remove 'model' from param names + state_dict = {k[6:]: v for k, v in checkpoint["state_dict"].items()} + model.load_state_dict(state_dict) # type: ignore + return model + class RiskFactorPredictor(SybilNet): def __init__(self, args): diff --git a/sybil/serie.py b/sybil/serie.py index e159b2b..febab36 100644 --- a/sybil/serie.py +++ b/sybil/serie.py @@ -138,7 +138,7 @@ def get_raw_images(self) -> List[np.ndarray]: images = [i["input"] for i in input_dicts] return images - @functools.cache + @functools.lru_cache def get_volume(self) -> torch.Tensor: """ Load loaded 3D CT volume diff --git a/tests/regression_test.py b/tests/regression_test.py index a3dfb65..0dda77b 100644 --- a/tests/regression_test.py +++ b/tests/regression_test.py @@ -1,13 +1,26 @@ import datetime +import io +import json import math import os +import shutil +import time +import unittest + +import numpy as np import requests +import tqdm +import warnings import zipfile +warnings.filterwarnings("ignore", category=DeprecationWarning) + +import sybil.model +import sybil.models.calibrator from sybil import Serie, Sybil, visualize_attentions script_directory = os.path.dirname(os.path.abspath(__file__)) -project_directory = os.path.dirname(script_directory) +PROJECT_DIR = os.path.dirname(script_directory) def myprint(instr): @@ -20,85 +33,119 @@ def download_and_extract_zip(zip_file_name, cache_dir, url, demo_data_dir): # 1. Check if the zip file exists if not os.path.exists(zip_file_path): - # myprint(f"Zip file not found at {zip_file_path}. Downloading from {url}...") # 2. Download the file response = requests.get(url) with open(zip_file_path, 'wb') as file: file.write(response.content) - # myprint(f"Downloaded zip file to {zip_file_path}") # 3. Check if the output directory exists if not os.path.exists(demo_data_dir): - # myprint(f"Output directory {demo_data_dir} does not exist. Creating and extracting...") # 4. Extract the zip file with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: zip_ref.extractall(demo_data_dir) - # myprint(f"Extracted zip file to {demo_data_dir}") else: pass # myprint(f"Output directory {demo_data_dir} already exists. No extraction needed.") -def main(): - # Note that this function is named so that pytest will not automatically discover it - # It takes a long time to run and potentially a lot of disk space - - # Download demo data - demo_data_url = "https://www.dropbox.com/sh/addq480zyguxbbg/AACJRVsKDL0gpq-G9o3rfCBQa?dl=1" - expected_scores = [ - 0.021628819563619374, - 0.03857256315036462, - 0.07191945816622261, - 0.07926975188037134, - 0.09584583525781108, - 0.13568094038444453 - ] - - zip_file_name = "SYBIL.zip" - cache_dir = os.path.expanduser("~/.sybil") - demo_data_dir = os.path.join(cache_dir, "SYBIL") - image_data_dir = os.path.join(demo_data_dir, "sybil_demo_data") - os.makedirs(cache_dir, exist_ok=True) - download_and_extract_zip(zip_file_name, cache_dir, demo_data_url, demo_data_dir) - - dicom_files = os.listdir(image_data_dir) - dicom_files = [os.path.join(image_data_dir, x) for x in dicom_files] - num_files = len(dicom_files) - - # Load a trained model - # model = Sybil("sybil_ensemble") - model = Sybil() - - myprint(f"Beginning prediction using {num_files} files from {image_data_dir}") - - # Get risk scores - serie = Serie(dicom_files) - series = [serie] - prediction = model.predict(series, return_attentions=True) - actual_scores = prediction.scores[0] - count = len(actual_scores) - - myprint(f"Prediction finished. Results\n{actual_scores}") - - # pprint.pprint(f"Prediction object: {prediction}") - - assert len(expected_scores) == len(actual_scores), f"Unexpected score length {count}" - - all_elements_match = True - for exp_score, act_score in zip(expected_scores, actual_scores): - does_match = math.isclose(exp_score, act_score, rel_tol=1e-6) - assert does_match, f"Mismatched scores. {exp_score} != {act_score}" - all_elements_match &= does_match - - print(f"Data URL: {demo_data_url}\nAll {count} elements match: {all_elements_match}") - - series_with_attention = visualize_attentions( - series, - attentions=prediction.attentions, - save_directory="regression_test_output", - gain=3, - ) +def get_sybil_model_path(model_name_or_path, cache_dir="~/.sybil"): + cache_dir = os.path.expanduser(cache_dir) + if os.path.exists(model_name_or_path): + path = model_name_or_path + elif model_name_or_path in sybil.model.NAME_TO_FILE: + paths = sybil.model.NAME_TO_FILE[model_name_or_path]["checkpoint"] + assert len(paths) == 1, "Can only save 1 model at a time, no ensembles" + path = os.path.join(cache_dir, paths[0] + ".ckpt") + else: + raise ValueError(f"Model name or path not found: {model_name_or_path}") + + return path + + +class TestPredict(unittest.TestCase): + def test_demo_data(self): + if not os.environ.get("SYBIL_TEST_RUN_REGRESSION", "false").lower() == "true": + import pytest + pytest.skip(f"Skipping long-running test in {type(self)}.") + + # Download demo data + demo_data_url = "https://www.dropbox.com/sh/addq480zyguxbbg/AACJRVsKDL0gpq-G9o3rfCBQa?dl=1" + expected_scores = [ + 0.021628819563619374, + 0.03857256315036462, + 0.07191945816622261, + 0.07926975188037134, + 0.09584583525781108, + 0.13568094038444453 + ] + + zip_file_name = "SYBIL.zip" + cache_dir = os.path.expanduser("~/.sybil") + demo_data_dir = os.path.join(cache_dir, "SYBIL") + image_data_dir = os.path.join(demo_data_dir, "sybil_demo_data") + os.makedirs(cache_dir, exist_ok=True) + download_and_extract_zip(zip_file_name, cache_dir, demo_data_url, demo_data_dir) + + dicom_files = os.listdir(image_data_dir) + dicom_files = [os.path.join(image_data_dir, x) for x in dicom_files] + num_files = len(dicom_files) + + # Load a trained model + model = Sybil() + + myprint(f"Beginning prediction using {num_files} files from {image_data_dir}") + + # Get risk scores + serie = Serie(dicom_files) + series = [serie] + prediction = model.predict(series, return_attentions=True) + actual_scores = prediction.scores[0] + count = len(actual_scores) + + myprint(f"Prediction finished. Results\n{actual_scores}") + + assert len(expected_scores) == len(actual_scores), f"Unexpected score length {count}" + + all_elements_match = True + for exp_score, act_score in zip(expected_scores, actual_scores): + does_match = math.isclose(exp_score, act_score, rel_tol=1e-6) + assert does_match, f"Mismatched scores. {exp_score} != {act_score}" + all_elements_match &= does_match + + print(f"Data URL: {demo_data_url}\nAll {count} elements match: {all_elements_match}") + + series_with_attention = visualize_attentions( + series, + attentions=prediction.attentions, + save_directory="regression_test_output", + gain=3, + ) + + def test_calibrator(self): + """ + Test the calibrator against previous known calibrations. + """ + + default_baseline_path = os.path.join(PROJECT_DIR, "tests", "sybil_ensemble_v1.4.0_calibrations.json") + baseline_path = os.environ.get("SYBIL_TEST_BASELINE_PATH", default_baseline_path) + + new_cal_dict_path = os.environ.get("SYBIL_TEST_COMPARE_PATH", "~/.sybil/sybil_ensemble_simple_calibrator.json") + new_cal_dict_path = os.path.expanduser(new_cal_dict_path) + raw_new_cal_dict = json.load(open(new_cal_dict_path, "r")) + new_cal_dict = {} + for key, val in raw_new_cal_dict.items(): + new_cal_dict[key] = sybil.models.calibrator.SimpleClassifierGroup.from_json(val) + + baseline_preds = json.load(open(baseline_path, "r")) + test_probs = np.array(baseline_preds["x"]).reshape(-1, 1) + year_keys = [key for key in baseline_preds.keys() if key.startswith("Year")] + for year_key in year_keys: + baseline_scores = np.array(baseline_preds[year_key]).flatten() + new_cal = new_cal_dict[year_key] + new_scores = new_cal.predict_proba(test_probs).flatten() + + self.assertTrue(np.allclose(baseline_scores, new_scores, atol=1e-10), f"Calibration mismatch for {year_key}") if __name__ == "__main__": - main() + unittest.main() From ffc2416a251d94fa28f06e47b4c3693f2e33bf9f Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Mon, 29 Jul 2024 14:52:35 -0400 Subject: [PATCH 4/7] Add additional regression test which downloads and processes a randomly selected group of NLST CT scans. --- tests/regression_test.py | 246 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 246 insertions(+) diff --git a/tests/regression_test.py b/tests/regression_test.py index 0dda77b..fd4a2d7 100644 --- a/tests/regression_test.py +++ b/tests/regression_test.py @@ -18,10 +18,42 @@ import sybil.model import sybil.models.calibrator from sybil import Serie, Sybil, visualize_attentions +from sybil.utils import device_utils script_directory = os.path.dirname(os.path.abspath(__file__)) PROJECT_DIR = os.path.dirname(script_directory) +nlst_test_series_uids = """ +1.2.840.113654.2.55.117165331353985769278030759027968557175 +1.2.840.113654.2.55.125761431810488169605478704683628260210 +1.2.840.113654.2.55.141145605876336438705007116410698504988 +1.2.840.113654.2.55.172973285539665405130180217312651302726 +1.2.840.113654.2.55.177114075868256371370044474147630945288 +1.2.840.113654.2.55.210451208063625047828616019396666958685 +1.2.840.113654.2.55.22343358537878328490619391877977879745 +1.2.840.113654.2.55.250355771186119178528311921318050236359 +1.2.840.113654.2.55.264036959200244122726184171100390477201 +1.2.840.113654.2.55.270666838959776453521953970167166965589 +1.2.840.113654.2.55.5405951206377419400128917954731813327 +1.2.840.113654.2.55.83074092506605340087865221843273784687 +1.2.840.113654.2.55.9114064256331314804445563449996729696 +1.3.6.1.4.1.14519.5.2.1.7009.9004.102050757680671140089992182963 +1.3.6.1.4.1.14519.5.2.1.7009.9004.140916852551836049221836980755 +1.3.6.1.4.1.14519.5.2.1.7009.9004.145444099046834219014840219889 +1.3.6.1.4.1.14519.5.2.1.7009.9004.160633847701259284025259919227 +1.3.6.1.4.1.14519.5.2.1.7009.9004.219693265059595773200467950221 +1.3.6.1.4.1.14519.5.2.1.7009.9004.228293333306602707645036607751 +1.3.6.1.4.1.14519.5.2.1.7009.9004.230644512623268816899910856967 +1.3.6.1.4.1.14519.5.2.1.7009.9004.234524223570882184991800514748 +1.3.6.1.4.1.14519.5.2.1.7009.9004.252281466173937391895189766240 +1.3.6.1.4.1.14519.5.2.1.7009.9004.310293448890324961317272491664 +1.3.6.1.4.1.14519.5.2.1.7009.9004.330739122093904668699523188451 +1.3.6.1.4.1.14519.5.2.1.7009.9004.338644625343131376124729421878 +1.3.6.1.4.1.14519.5.2.1.7009.9004.646014655040104355409047679769 +""" + +test_series_uids = nlst_test_series_uids + def myprint(instr): print(f"{datetime.datetime.now()} - {instr}") @@ -121,6 +153,220 @@ def test_demo_data(self): gain=3, ) + +def _get_nlst(series_instance_uid, cache_dir=".cache"): + base_url = "https://nlst.cancerimagingarchive.net/nbia-api/services/v1" + series_dir = os.path.join(cache_dir, series_instance_uid) + if os.path.exists(series_dir): + return series_dir + + action = "getImage" + remote_url = f"{base_url}/{action}" + print(f"Downloading {series_instance_uid} from {remote_url}") + response = requests.get(remote_url, params={"SeriesInstanceUID": series_instance_uid}) + # The response is a zip file, I want to unzip it into a directory + os.makedirs(series_dir, exist_ok=True) + + if response.status_code == 200: + zip_file_bytes = io.BytesIO(response.content) + with zipfile.ZipFile(zip_file_bytes) as zip_file: + zip_file.extractall(series_dir) + print(f"Files extracted to {series_dir}") + else: + print(f"Failed to download file. Status code: {response.status_code}") + + return series_dir + + +class TestPredictionRegression(unittest.TestCase): + + def test_nlst_predict(self, allow_resume=True, delete_downloaded_files=False): + if not os.environ.get("SYBIL_TEST_RUN_REGRESSION", "false").lower() == "true": + import pytest + pytest.skip(f"Skipping long-running test in {type(self)}.") + + test_series_list = test_series_uids.split("\n") + test_series_list = [x.strip() for x in test_series_list if x.strip()] + print(f"About to test {len(test_series_list)} series") + + # Whether to allow resuming from a previous run, + # or to overwrite the existing results file. + # Operates on a per-series basis. + model_name = "sybil_ensemble" + + # True -> send web requests to the ARK server (must be launched separately). + # False -> to run inference directly. + use_ark = os.environ.get("SYBIL_TEST_USE_ARK", "false").lower() == "true" + ark_host = os.environ.get("SYBIL_ARK_HOST", "http://localhost:5000") + + version = sybil.__version__ + + out_fi_name = f"nlst_predictions_{model_name}_v{version}.json" + info_data = {} + if use_ark: + # Query the ARK server to get the version + print(f"Will use ark server {ark_host} for prediction") + resp = requests.get(f"{ark_host}/info") + info_data = resp.json()["data"] + print(f"ARK server response: {resp.text}") + version = info_data["modelVersion"] + out_fi_name = f"nlst_predictions_ark_v{version}.json" + + output_dir = os.path.join(PROJECT_DIR, "tests", "nlst_predictions") + + metadata = { + "modelName": model_name, + "modelVersion": version, + "start_time": datetime.datetime.now().isoformat(), + } + metadata.update(info_data) + all_results = {"__metadata__": metadata} + + os.makedirs(output_dir, exist_ok=True) + cur_pred_results = os.path.join(output_dir, out_fi_name) + cache_dir = os.path.join(PROJECT_DIR, ".cache") + + if os.path.exists(cur_pred_results): + if allow_resume: + with open(cur_pred_results, 'r') as f: + all_results = json.load(f) + else: + os.remove(cur_pred_results) + + if use_ark: + model = device = None + else: + model = Sybil(model_name) + + device = device_utils.get_default_device() + if bool(model) and bool(device): + model.to(device) + + num_to_process = len(test_series_list) + for idx, series_uid in enumerate(tqdm.tqdm(test_series_list)): + print(f"{datetime.datetime.now()} Processing {series_uid} ({idx}/{num_to_process})") + if series_uid in all_results: + print(f"Already processed {series_uid}, skipping") + continue + + series_dir = _get_nlst(series_uid, cache_dir=cache_dir) + dicom_files = os.listdir(series_dir) + dicom_files = sorted([os.path.join(series_dir, x) for x in dicom_files if x.endswith(".dcm")]) + + if len(dicom_files) < 20: + print(f"Skipping {series_uid} due to insufficient files ({len(dicom_files)})") + continue + + try: + prediction = all_results.get(series_uid, {}) + if use_ark: + # Submit prediction to ARK server. + files = [('dicom', open(file_path, 'rb')) for file_path in dicom_files] + r = requests.post(f"{ark_host}/dicom/files", files=files) + _ = [f[1].close() for f in files] + if r.status_code != 200: + print(f"An error occurred while processing {series_uid}: {r.text}") + prediction["error"] = r.text + continue + else: + r_json = r.json() + prediction = r_json["data"] + prediction["runtime"] = r_json["runtime"] + prediction["predictions"] = prediction["predictions"][0] + else: + serie = Serie(dicom_files) + start_time = time.time() + pred_result = model.predict([serie], return_attentions=False) + runtime = "{:.2f}s".format(time.time() - start_time) + + scores = pred_result.scores + prediction = {"predictions": scores, "runtime": runtime} + + if delete_downloaded_files: + shutil.rmtree(series_dir) + + except Exception as e: + print(f"Failed to process {series_uid}: {e}") + continue + + cur_dict = { + "series_uid": series_uid, + "num_slices": len(dicom_files), + } + + if prediction: + cur_dict.update(prediction) + + all_results[series_uid] = cur_dict + + # Save as we go + with open(cur_pred_results, 'w') as f: + json.dump(all_results, f, indent=2) + + def test_compare_predict_scores(self): + if not os.environ.get("SYBIL_TEST_RUN_REGRESSION", "false").lower() == "true": + import pytest + pytest.skip(f"Skipping long-running test '{type(self)}'.") + + default_baseline_preds_path = os.path.join(PROJECT_DIR, "tests", + "nlst_predictions", "nlst_predictions_ark_v1.4.0.json") + baseline_preds_path = os.environ.get("SYBIL_TEST_BASELINE_PATH", default_baseline_preds_path) + + version = sybil.__version__ + default_new_preds_path = os.path.join(PROJECT_DIR, "tests", + "nlst_predictions", f"nlst_predictions_sybil_ensemble_v{version}.json") + new_preds_path = os.environ.get("SYBIL_TEST_COMPARE_PATH", default_new_preds_path) + assert new_preds_path, "SYBIL_TEST_COMPARE_PATH must be set to the path of the new predictions file." + pred_key = "predictions" + num_compared = 0 + + with open(baseline_preds_path, 'r') as f: + baseline_preds = json.load(f) + with open(new_preds_path, 'r') as f: + new_preds = json.load(f) + + ignore_keys = {"__metadata__"} + overlap_keys = set(baseline_preds.keys()).intersection(new_preds.keys()) - ignore_keys + union_keys = set(baseline_preds.keys()).union(new_preds.keys()) - ignore_keys + print(f"{len(overlap_keys)} / {len(union_keys)} patients in common between the two prediction files.") + + all_mismatches = [] + for series_uid_key in overlap_keys: + if series_uid_key in ignore_keys: + continue + + if pred_key not in baseline_preds[series_uid_key]: + print(f"{pred_key} not found in baseline predictions for {series_uid_key}") + assert pred_key not in new_preds[series_uid_key] + continue + + compare_keys = ["predictions"] + for comp_key in compare_keys: + cur_baseline_preds = baseline_preds[series_uid_key][comp_key][0] + cur_new_preds = new_preds[series_uid_key][comp_key][0] + for ind in range(len(cur_baseline_preds)): + year = ind + 1 + baseline_score = cur_baseline_preds[ind] + new_score = cur_new_preds[ind] + does_match = math.isclose(baseline_score, new_score, abs_tol=1e-6) + if not does_match: + err_str = f"Scores for {series_uid_key}, {comp_key} differ for year {year}.\n" + err_str += f"Diff: {new_score - baseline_score:0.4e}. Baseline: {baseline_score:0.4e}, New: {new_score:0.4e}" + all_mismatches.append(err_str) + + num_compared += 1 + + assert num_compared > 0 + print(f"Compared {num_compared} patients.") + + if all_mismatches: + print(f"Found {len(all_mismatches)} mismatches.") + for err in all_mismatches: + print(err) + + num_mismatches = len(all_mismatches) + assert num_mismatches == 0, f"Found {num_mismatches} mismatches between the two prediction files." + def test_calibrator(self): """ Test the calibrator against previous known calibrations. From 3eda6625bd366e9e2a21dd70798a2b051f41de2c Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Tue, 30 Jul 2024 10:00:30 -0400 Subject: [PATCH 5/7] Allow setting CHECKPOINT_URL by environment variable. Set default URL to a dropbox location with v1.5.0 calibrators. --- sybil/model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sybil/model.py b/sybil/model.py index d5cfc80..9efa803 100644 --- a/sybil/model.py +++ b/sybil/model.py @@ -67,7 +67,7 @@ }, } -CHECKPOINT_URL = "https://github.com/reginabarzilaygroup/Sybil/releases/download/v1.0.3/sybil_checkpoints.zip" +CHECKPOINT_URL = os.getenv("SYBIL_CHECKPOINT_URL", "https://www.dropbox.com/scl/fi/45rtadfdci0bj8dbpotmr/sybil_checkpoints_v1.5.0.zip?rlkey=n8n7pvhb89pjoxgvm90mtbtuk&dl=1") class Prediction(NamedTuple): From fa292a6a2d5c8eefa330c48ac3a2ec25ed7aafbc Mon Sep 17 00:00:00 2001 From: Peter Mikhael Date: Mon, 17 Jun 2024 18:11:54 -0400 Subject: [PATCH 6/7] Image position should be extracted into a list rather than single float of a single slice --- scripts/data/create_nlst_metadata_json.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/scripts/data/create_nlst_metadata_json.py b/scripts/data/create_nlst_metadata_json.py index 0ed21fe..70fce1c 100644 --- a/scripts/data/create_nlst_metadata_json.py +++ b/scripts/data/create_nlst_metadata_json.py @@ -120,7 +120,7 @@ def make_metadata_dict(dataframe, pid, timepoint, series_id, use_timepoint = Fal 'slice_number': [slicenumber], 'pixel_spacing': pixel_spacing, 'slice_thickness': slice_thickness, - 'img_position': img_posn, + 'img_position': [img_posn], 'series_data': make_metadata_dict(image_data, pid, timepoint, series_id, use_timepoint_and_studyinstance = True) } @@ -135,6 +135,7 @@ def make_metadata_dict(dataframe, pid, timepoint, series_id, use_timepoint = Fal json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['paths'].append(path) json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['slice_location'].append(slicelocation) json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['slice_number'].append(slicenumber) + json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['img_position'].append(img_posn) else: exam_dict['image_series'] = {series_id: img_series_dict} json_dataset[pt_idx]['accessions'].append(exam_dict) From 552eda02cb3a31123edce60be5afa23652982f9e Mon Sep 17 00:00:00 2001 From: Jacob Silterra Date: Wed, 31 Jul 2024 10:39:47 -0400 Subject: [PATCH 7/7] Download reference calibrator and calibrations in unit test if they don't already exist. --- tests/regression_test.py | 40 +++++++++++++++++++++++++++++++++------- 1 file changed, 33 insertions(+), 7 deletions(-) diff --git a/tests/regression_test.py b/tests/regression_test.py index fd4a2d7..f13b403 100644 --- a/tests/regression_test.py +++ b/tests/regression_test.py @@ -59,6 +59,23 @@ def myprint(instr): print(f"{datetime.datetime.now()} - {instr}") +def download_file(url, filename): + response = requests.get(url) + + target_dir = os.path.dirname(filename) + if target_dir and not os.path.exists(target_dir): + os.makedirs(target_dir) + + # Check if the request was successful + if response.status_code == 200: + with open(filename, 'wb') as file: + file.write(response.content) + else: + print(f"Failed to download file. Status code: {response.status_code}") + + return filename + + def download_and_extract_zip(zip_file_name, cache_dir, url, demo_data_dir): # Check and construct the full path of the zip file zip_file_path = os.path.join(cache_dir, zip_file_name) @@ -375,19 +392,28 @@ def test_calibrator(self): default_baseline_path = os.path.join(PROJECT_DIR, "tests", "sybil_ensemble_v1.4.0_calibrations.json") baseline_path = os.environ.get("SYBIL_TEST_BASELINE_PATH", default_baseline_path) - new_cal_dict_path = os.environ.get("SYBIL_TEST_COMPARE_PATH", "~/.sybil/sybil_ensemble_simple_calibrator.json") - new_cal_dict_path = os.path.expanduser(new_cal_dict_path) - raw_new_cal_dict = json.load(open(new_cal_dict_path, "r")) - new_cal_dict = {} - for key, val in raw_new_cal_dict.items(): - new_cal_dict[key] = sybil.models.calibrator.SimpleClassifierGroup.from_json(val) + if not os.path.exists(baseline_path) and baseline_path == default_baseline_path: + os.makedirs(os.path.dirname(default_baseline_path), exist_ok=True) + reference_calibrations_url = "https://www.dropbox.com/scl/fi/2fx6ukmozia7y3u8mie97/sybil_ensemble_v1.4.0_calibrations.json?rlkey=tquids9qo4mkkuf315nqdq0o7&dl=1" + download_file(reference_calibrations_url, default_baseline_path) + + default_cal_dict_path = os.path.expanduser("~/.sybil/sybil_ensemble_simple_calibrator.json") + compare_calibrator_path = os.environ.get("SYBIL_TEST_COMPARE_PATH", default_cal_dict_path) + compare_calibrator_path = os.path.expanduser(compare_calibrator_path) + if not os.path.exists(compare_calibrator_path) and compare_calibrator_path == default_cal_dict_path: + test_model = Sybil("sybil_ensemble") + + raw_calibrator_dict = json.load(open(compare_calibrator_path, "r")) + new_calibrator_dict = {} + for key, val in raw_calibrator_dict.items(): + new_calibrator_dict[key] = sybil.models.calibrator.SimpleClassifierGroup.from_json(val) baseline_preds = json.load(open(baseline_path, "r")) test_probs = np.array(baseline_preds["x"]).reshape(-1, 1) year_keys = [key for key in baseline_preds.keys() if key.startswith("Year")] for year_key in year_keys: baseline_scores = np.array(baseline_preds[year_key]).flatten() - new_cal = new_cal_dict[year_key] + new_cal = new_calibrator_dict[year_key] new_scores = new_cal.predict_proba(test_probs).flatten() self.assertTrue(np.allclose(baseline_scores, new_scores, atol=1e-10), f"Calibration mismatch for {year_key}")