-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmrmodal.ado
199 lines (178 loc) · 4.91 KB
/
mrmodal.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
*! version 0.1.0 02jun2017 Tom Palmer
program mrmodal, eclass
version 9
local version : di "version " string(_caller()) ", missing :"
local replay = replay()
if replay() {
if _by() {
error 190
}
`version' Display `0'
exit
}
syntax varlist(min=4 max=4) [if] [in] [, Level(cilevel) ///
WEIGHTed NOME PHI(real 1) seed(string) reps(integer 1000) nosave]
local callersversion = _caller()
// check if kdens package installed
capt mata mata which kdens()
if _rc {
di as err "The -kdens- package is required; install using"
di "{stata ssc install kdens}"
exit 499
}
** seed option
if "`seed'" != "" {
version `callersversion': set seed `seed'
}
// number of genotypes (i.e. rows of data used in estimation)
qui count `if' `in'
local k = r(N)
if `k' < 3 {
di as err "mrmodal requires a minimum of 3 genotypes"
exit 2001
}
tokenize `"`varlist'"'
/*
4 variables:
1: gd beta
2: gd se
3: gp beta
4: gp se
*/
tempvar BetaYG seBetaYG BetaXG seBetaXG betaiv sebetaiv
qui gen double `BetaYG' = `1' `if' `in'
qui gen double `seBetaYG' = `2' `if' `in'
qui gen double `BetaXG' = `3' `if' `in'
qui gen double `seBetaXG' = `4' `if' `in'
qui gen double `betaiv' = `1'/`3' `if' `in'
if "`nome'" == "" {
qui gen double `sebetaiv' = sqrt((`seBetaYG'^2)/(`BetaXG'^2) + ///
((`BetaYG'^2)*(`seBetaXG'^2))/(`BetaXG'^4)) `if' `in'
}
else {
qui gen double `sebetaiv' = `seBetaYG'/abs(`BetaXG') `if' `in'
}
tempvar sebetaivw
if "`weighted'" == "" {
qui gen double `sebetaivw' = 1 `if' `in'
local weightind 0
}
else {
qui gen double `sebetaivw' = `sebetaiv' `if' `in'
local weightind 1
}
** estimation
mata phi = strtoreal(st_local("phi"))
qui putmata `betaiv' `sebetaiv' `sebetaivw', replace omitmissing
mata densityiv = g = .
mata mrmodal_beta = mrmodal_beta(`betaiv', `sebetaivw', phi, densityiv, g)
if "`save'" == "" {
mata mrmodal_densityiv = densityiv
mata mrmodal_g = g
}
mata reps = strtoreal(st_local("reps"))
mata densityiv = g = .
mata mrmodal_se = mrmodal_se(`betaiv', `sebetaiv', `sebetaivw', ///
phi, reps, `weightind', densityiv, g)
mata mata drop densityiv g
mata st_matrix("b", mrmodal_beta)
mata st_matrix("V", mrmodal_se^2)
local names beta
matrix colnames b = `names'
matrix colnames V = `names'
matrix rownames V = `names'
ereturn post b V
** display coefficient table
Display , level(`level') k(`k') reps(`reps') phi(`phi')
mata mata drop `betaiv' `sebetaiv' `sebetaivw'
mata mata drop phi mrmodal_beta mrmodal_se reps
ereturn local cmd "mrmodal"
ereturn local cmdline `"mrmodal `0'"'
ereturn scalar k = scalar(`k')
ereturn scalar reps = `reps'
ereturn scalar phi = `phi'
end
program Display, rclass
syntax , [K(integer 0) reps(integer 0) Level(cilevel) PHI(real 0)]
if "`k'" == "0" {
local k = e(k)
}
if "`reps'" == "0" {
local reps = e(reps)
}
if "`phi'" == "0" {
local phi = e(phi)
}
local digits : length local k
local colstart = 79 - (22 + `digits')
di _n(1) _col(`colstart') as txt "Number of genotypes = " as res %`digits'.0fc `k'
local digits2 : length local reps
local colstart2 = 79 - (15 + `digits2')
di _col(`colstart2') as txt "Replications = " as res %`digits2'.0fc `reps'
local digits3 : length local phi // version 13 strlen bug was here
local colstart3 = 79 - (6 + `digits3')
di _col(`colstart3') as txt "Phi = " as res `phi'
ereturn display, level(`level')
return add // r(table)
end
mata
real scalar function mrmodal_mad(real colvector x)
{
real scalar median
real scalar mad
median = mm_median(1.4826*x) // constant as used in R
mad = mm_median(abs(1.4826*x :- median))
return(mad)
}
real scalar function mrmodal_beta(real colvector betaiv,
real colvector sebetaiv,
real scalar phi,
densityiv, g)
{
real colvector weights
real scalar sd, mad, min, max, m, cut, pos, maxd, h, s
mad = mrmodal_mad(betaiv)
sd = sqrt(variance(betaiv))
s = 0.9*(min((sd, mad)'))/length(betaiv)^(1/5)
weights = sebetaiv:^(-2) / sum(sebetaiv:^(-2))
h = s*phi
cut = 3 // default from R density()
m = 512 // default from R density()
min = min(betaiv) - cut*h // as per R density()
max = max(betaiv) + cut*h // as per R density()
g = kdens_grid(betaiv, weights, h, "gaussian", m, min, max)
densityiv = kdens(betaiv, weights, g, h, "gaussian")
maxd = max(densityiv)
// check if only 1 point gives max density
if (sum(densityiv :== maxd) != 1) {
stata(`"di as err "Density of IV estimates has >1 maxima.""')
stata(`"exit 498"')
}
pos = mm_which(densityiv :== maxd)
return(g[pos])
}
real scalar function mrmodal_se(real colvector betaiv,
real colvector sebetaiv,
real colvector sebetaivw,
real scalar phi,
real scalar reps,
real scalar weightind,
densityiv, g)
{
real colvector res, betaivboot
real scalar n
res = J(reps, 1, .)
for (i=1; i<=reps; i++) {
betaivboot = rnormal(1, 1, betaiv, sebetaiv)
if (weightind == 0) {
res[i] = mrmodal_beta(betaivboot, sebetaivw, phi, densityiv, g)
}
else if (weightind == 1) {
res[i] = mrmodal_beta(betaivboot, sebetaivw, phi,
densityiv, g)
}
}
return(sqrt(variance(res)))
}
end
exit