forked from vinhkhuc/MemN2N-babi-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
246 lines (197 loc) · 8.56 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import division
import sys
import time
import numpy as np
from memn2n.memory import MemoryL, MemoryBoW
from memn2n.nn import AddTable, CrossEntropyLoss, Duplicate, ElemMult, LinearNB
from memn2n.nn import Identity, ReLU, Sequential, LookupTable, Sum, Parallel, Softmax
def parse_babi_task(data_files, dictionary, include_question):
""" Parse bAbI data.
Args:
data_files (list): a list of data file's paths.
dictionary (dict): word's dictionary
include_question (bool): whether count question toward input sentence.
Returns:
A tuple of (story, questions, qstory):
story (3-D array)
[position of word in sentence, sentence index, story index] = index of word in dictionary
questions (2-D array)
[0-9, question index], in which the first component is encoded as follows:
0 - story index
1 - index of the last sentence before the question
2 - index of the answer word in dictionary
3 to 13 - indices of supporting sentence
14 - line index
qstory (2-D array) question's indices within a story
[index of word in question, question index] = index of word in dictionary
"""
# Try to reserve spaces beforehand (large matrices for both 1k and 10k data sets)
# maximum number of words in sentence = 20
story = np.zeros((20, 500, len(data_files) * 3500), np.int16)
questions = np.zeros((14, len(data_files) * 10000), np.int16)
qstory = np.zeros((20, len(data_files) * 10000), np.int16)
# NOTE: question's indices are not reset when going through a new story
story_idx, question_idx, sentence_idx, max_words, max_sentences = -1, -1, -1, 0, 0
# Mapping line number (within a story) to sentence's index (to support the flag include_question)
mapping = None
for fp in data_files:
with open(fp) as f:
for line_idx, line in enumerate(f):
line = line.rstrip().lower()
words = line.split()
# Story begins
if words[0] == '1':
story_idx += 1
sentence_idx = -1
mapping = []
# FIXME: This condition makes the code more fragile!
if '?' not in line:
is_question = False
sentence_idx += 1
else:
is_question = True
question_idx += 1
questions[0, question_idx] = story_idx
questions[1, question_idx] = sentence_idx
if include_question:
sentence_idx += 1
mapping.append(sentence_idx)
# Skip substory index
for k in range(1, len(words)):
w = words[k]
if w.endswith('.') or w.endswith('?'):
w = w[:-1]
if w not in dictionary:
dictionary[w] = len(dictionary)
if max_words < k:
max_words = k
if not is_question:
story[k - 1, sentence_idx, story_idx] = dictionary[w]
else:
qstory[k - 1, question_idx] = dictionary[w]
if include_question:
story[k - 1, sentence_idx, story_idx] = dictionary[w]
# NOTE: Punctuation is already removed from w
if words[k].endswith('?'):
answer = words[k + 1]
if answer not in dictionary:
dictionary[answer] = len(dictionary)
questions[2, question_idx] = dictionary[answer]
# Indices of supporting sentences
for h in range(k + 2, len(words)):
questions[1 + h - k, question_idx] = mapping[int(words[h]) - 1]
questions[-1, question_idx] = line_idx
break
if max_sentences < sentence_idx + 1:
max_sentences = sentence_idx + 1
story = story[:max_words, :max_sentences, :(story_idx + 1)]
questions = questions[:, :(question_idx + 1)]
qstory = qstory[:max_words, :(question_idx + 1)]
return story, questions, qstory
def build_model(general_config):
"""
Build model
NOTE: (for default config)
1) Model's architecture (embedding B)
LookupTable -> ElemMult -> Sum -> [ Duplicate -> { Parallel -> Memory -> Identity } -> AddTable ] -> LinearNB -> Softmax
2) Memory's architecture
a) Query module (embedding A)
Parallel -> { LookupTable + ElemMult + Sum } -> Identity -> MatVecProd -> Softmax
b) Output module (embedding C)
Parallel -> { LookupTable + ElemMult + Sum } -> Identity -> MatVecProd
"""
train_config = general_config.train_config
dictionary = general_config.dictionary
use_bow = general_config.use_bow
nhops = general_config.nhops
add_proj = general_config.add_proj
share_type = general_config.share_type
enable_time = general_config.enable_time
add_nonlin = general_config.add_nonlin
in_dim = train_config["in_dim"]
out_dim = train_config["out_dim"]
max_words = train_config["max_words"]
voc_sz = train_config["voc_sz"]
if not use_bow:
train_config["weight"] = np.ones((in_dim, max_words), np.float32)
for i in range(in_dim):
for j in range(max_words):
train_config["weight"][i][j] = (i + 1 - (in_dim + 1) / 2) * \
(j + 1 - (max_words + 1) / 2)
train_config["weight"] = \
1 + 4 * train_config["weight"] / (in_dim * max_words)
memory = {}
model = Sequential()
model.add(LookupTable(voc_sz, in_dim))
if not use_bow:
if enable_time:
model.add(ElemMult(train_config["weight"][:, :-1]))
else:
model.add(ElemMult(train_config["weight"]))
model.add(Sum(dim=1))
proj = {}
for i in range(nhops):
if use_bow:
memory[i] = MemoryBoW(train_config)
else:
memory[i] = MemoryL(train_config)
# Override nil_word which is initialized in "self.nil_word = train_config["voc_sz"]"
memory[i].nil_word = dictionary['nil']
model.add(Duplicate())
p = Parallel()
p.add(memory[i])
if add_proj:
proj[i] = LinearNB(in_dim, in_dim)
p.add(proj[i])
else:
p.add(Identity())
model.add(p)
model.add(AddTable())
if add_nonlin:
model.add(ReLU())
model.add(LinearNB(out_dim, voc_sz, True))
model.add(Softmax())
# Share weights
if share_type == 1:
# Type 1: adjacent weight tying
memory[0].emb_query.share(model.modules[0])
for i in range(1, nhops):
memory[i].emb_query.share(memory[i - 1].emb_out)
model.modules[-2].share(memory[len(memory) - 1].emb_out)
elif share_type == 2:
# Type 2: layer-wise weight tying
for i in range(1, nhops):
memory[i].emb_query.share(memory[0].emb_query)
memory[i].emb_out.share(memory[0].emb_out)
if add_proj:
for i in range(1, nhops):
proj[i].share(proj[0])
# Cost
loss = CrossEntropyLoss()
loss.size_average = False
loss.do_softmax_bprop = True
model.modules[-1].skip_bprop = True
return memory, model, loss
class Progress(object):
"""
Progress bar
"""
def __init__(self, iterable, bar_length=50):
self.iterable = iterable
self.bar_length = bar_length
self.total_length = len(iterable)
self.start_time = time.time()
self.count = 0
def __iter__(self):
for obj in self.iterable:
yield obj
self.count += 1
percent = self.count / self.total_length
print_length = int(percent * self.bar_length)
progress = "=" * print_length + " " * (self.bar_length - print_length)
elapsed_time = time.time() - self.start_time
print_msg = "\r|%s| %.0f%% %.1fs" % (progress, percent * 100, elapsed_time)
sys.stdout.write(print_msg)
if self.count == self.total_length:
sys.stdout.write("\r" + " " * len(print_msg) + "\r")
sys.stdout.flush()