-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
220 lines (170 loc) · 7.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import time
import argparse
import numpy as np
import torch
# import torch.nn.functional as F
import torch.optim as optim
from models.netdeconf import GCN_DECONF
import utils
# from scipy import sparse as sp
import csv
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--nocuda', type=int, default=0,
help='Disables CUDA training.')
parser.add_argument('--dataset', type=str, default='BlogCatalog')
parser.add_argument('--extrastr', type=str, default='1')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=1e-2,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-5,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=100,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--alpha', type=float, default=1e-4,
help='trade-off of representation balancing.')
parser.add_argument('--clip', type=float, default=100.,
help='gradient clipping')
parser.add_argument('--nout', type=int, default=2)
parser.add_argument('--nin', type=int, default=2)
parser.add_argument('--tr', type=float, default=0.6)
parser.add_argument(
'--path', type=str, default='./datasets/')
parser.add_argument('--normy', type=int, default=1)
args = parser.parse_args()
args.cuda = not args.nocuda and torch.cuda.is_available()
Tensor = torch.cuda.FloatTensor if args.cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if args.cuda else torch.LongTensor
alpha = Tensor([args.alpha])
np.random.seed(args.seed)
torch.manual_seed(args.seed)
loss = torch.nn.MSELoss()
bce_loss = torch.nn.BCEWithLogitsLoss()
if args.cuda:
torch.cuda.manual_seed(args.seed)
alpha = alpha.cuda()
loss = loss.cuda()
bce_loss = bce_loss.cuda()
def prepare(i_exp):
# Load data and init models
X, A, T, Y1, Y0 = utils.load_data(args.path, name=args.dataset, original_X=False, exp_id=str(i_exp), extra_str=args.extrastr)
n = X.shape[0]
n_train = int(n * args.tr)
n_test = int(n * 0.2)
# n_valid = n_test
idx = np.random.permutation(n)
idx_train, idx_test, idx_val = idx[:n_train], idx[n_train:n_train+n_test], idx[n_train+n_test:]
X = utils.normalize(X) #row-normalize
# A = utils.normalize(A+sp.eye(n))
X = X.todense()
X = Tensor(X)
Y1 = Tensor(np.squeeze(Y1))
Y0 = Tensor(np.squeeze(Y0))
T = LongTensor(np.squeeze(T))
A = utils.sparse_mx_to_torch_sparse_tensor(A,cuda=args.cuda)
# print(X.shape, Y1.shape, A.shape)
idx_train = LongTensor(idx_train)
idx_val = LongTensor(idx_val)
idx_test = LongTensor(idx_test)
# Model and optimizer
model = GCN_DECONF(nfeat=X.shape[1],
nhid=args.hidden,
dropout=args.dropout,n_out=args.nout,n_in=args.nin,cuda=args.cuda)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
return X, A, T, Y1, Y0, idx_train, idx_val, idx_test, model, optimizer
def train(epoch, X, A, T, Y1, Y0, idx_train, idx_val, model, optimizer):
t = time.time()
model.train()
# torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.zero_grad()
yf_pred, rep, p1 = model(X, A, T)
ycf_pred, _, p1 = model(X, A, 1-T)
# representation balancing, you can try different distance metrics such as MMD
rep_t1, rep_t0 = rep[idx_train][(T[idx_train] > 0).nonzero()], rep[idx_train][(T[idx_train] < 1).nonzero()]
dist, _ = utils.wasserstein(rep_t1, rep_t0, cuda=args.cuda)
YF = torch.where(T>0,Y1,Y0)
# YCF = torch.where(T>0,Y0,Y1)
if args.normy:
# recover the normalized outcomes
ym, ys = torch.mean(YF[idx_train]), torch.std(YF[idx_train])
YFtr, YFva = (YF[idx_train] - ym) / ys, (YF[idx_val] - ym) / ys
else:
YFtr = YF[idx_train]
YFva = YF[idx_val]
loss_train = loss(yf_pred[idx_train], YFtr) + alpha * dist
# acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if epoch%10==0:
# validation
loss_val = loss(yf_pred[idx_val], YFva) + alpha * dist
y1_pred, y0_pred = torch.where(T>0,yf_pred,ycf_pred), torch.where(T>0,ycf_pred,yf_pred)
# Y1, Y0 = torch.where(T>0, YF, YCF), torch.where(T>0, YCF, YF)
if args.normy:
y1_pred, y0_pred = y1_pred * ys + ym, y0_pred * ys + ym
# in fact, you are not supposed to do model selection w. pehe and mae_ate
# but it is possible to calculate with ITE ground truth (which often isn't available)
# pehe_val = torch.sqrt(loss((y1_pred - y0_pred)[idx_val],(Y1 - Y0)[idx_val]))
# mae_ate_val = torch.abs(
# torch.mean((y1_pred - y0_pred)[idx_val])-torch.mean((Y1 - Y0)[idx_val]))
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
# 'pehe_val: {:.4f}'.format(pehe_val.item()),
# 'mae_ate_val: {:.4f}'.format(mae_ate_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def eva(X, A, T, Y1, Y0, idx_train, idx_test, model, i_exp):
model.eval()
yf_pred, rep, p1 = model(X, A, T) # p1 can be used as propensity scores
# yf = torch.where(T>0, Y1, Y0)
ycf_pred, _, _ = model(X, A, 1-T)
YF = torch.where(T>0,Y1,Y0)
YCF = torch.where(T>0,Y0,Y1)
ym, ys = torch.mean(YF[idx_train]), torch.std(YF[idx_train])
# YFtr, YFva = (YF[idx_train] - ym) / ys, (YF[idx_val] - ym) / ys
y1_pred, y0_pred = torch.where(T>0,yf_pred,ycf_pred), torch.where(T>0,ycf_pred,yf_pred)
if args.normy:
y1_pred, y0_pred = y1_pred * ys + ym, y0_pred * ys + ym
# Y1, Y0 = torch.where(T>0, YF, YCF), torch.where(T>0, YCF, YF)
pehe_ts = torch.sqrt(loss((y1_pred - y0_pred)[idx_test],(Y1 - Y0)[idx_test]))
mae_ate_ts = torch.abs(torch.mean((y1_pred - y0_pred)[idx_test])-torch.mean((Y1 - Y0)[idx_test]))
print("Test set results:",
"pehe_ts= {:.4f}".format(pehe_ts.item()),
"mae_ate_ts= {:.4f}".format(mae_ate_ts.item()))
of_path = './new_results/' + args.dataset + args.extrastr + '/' + str(args.tr)
if args.lr != 1e-2:
of_path += 'lr'+str(args.lr)
if args.hidden != 100:
of_path += 'hid'+str(args.hidden)
if args.dropout != 0.5:
of_path += 'do'+str(args.dropout)
if args.epochs != 50:
of_path += 'ep'+str(args.epochs)
if args.weight_decay != 1e-5:
of_path += 'lbd'+str(args.weight_decay)
if args.nout != 1:
of_path += 'nout'+str(args.nout)
if args.alpha != 1e-5:
of_path += 'alp'+str(args.alpha)
if args.normy == 1:
of_path += 'normy'
of_path += '.csv'
of = open(of_path,'a')
wrt = csv.writer(of)
wrt.writerow([pehe_ts.item(),mae_ate_ts.item()])
if __name__ == '__main__':
for i_exp in range(0,10):
# Train model
X, A, T, Y1, Y0, idx_train, idx_val, idx_test, model, optimizer = prepare(i_exp)
t_total = time.time()
for epoch in range(args.epochs):
train(epoch, X, A, T, Y1, Y0, idx_train, idx_val, model, optimizer)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Testing
eva(X, A, T, Y1, Y0, idx_train, idx_test, model, i_exp)