-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
229 lines (177 loc) · 7.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# License: BSD
# Author: Sasank Chilamkurthy
from __future__ import print_function, division
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import transforms
import time
import matplotlib.pyplot as plt
import pickle as pk
import numpy as np
import copy
import models
import argparse
class CovidDatasetTrain(Dataset):
"""Face Landmarks dataset."""
def __init__(self, imgs, labels):
self.imgs = imgs
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return self.imgs[idx], self.labels[idx]
class CovidDatasetTest(Dataset):
"""Face Landmarks dataset."""
def __init__(self, imgs):
self.imgs = imgs
def __len__(self):
return self.imgs.shape[0]
def __getitem__(self, idx):
return self.imgs[idx]
def make_data_loaders():
train_dataset = CovidDatasetTrain(train_imgs, train_labels)
test_dataset = CovidDatasetTest(test_imgs)
batch_size = 10
validation_split = 0.2
random_seed = 43
# Creating data indices for training and validation splits:
train_size = len(train_dataset)
indices = list(range(train_size))
split = int(np.floor(validation_split * train_size))
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
return {
"train": DataLoader(train_dataset, batch_size=batch_size, num_workers=6, sampler=train_sampler),
"validation": DataLoader(train_dataset, batch_size=batch_size, num_workers=6, sampler=valid_sampler),
"test": DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=6),
}
def fit(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'validation']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in data_loaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
print('Predictions:')
print(preds)
# deep copy the model
if phase == 'validation' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def predict(model):
was_training = model.training
model.eval()
predictions = []
with torch.no_grad():
for i, (inputs) in enumerate(data_loaders['test']):
inputs = inputs.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
predictions.append(preds)
model.train(mode=was_training)
print(predictions)
def imshow():
inputs, labels = next(iter(data_loaders['train']))
out = torchvision.utils.make_grid(inputs)
sample_img = transforms.ToPILImage(mode="RGB")(-out * 255)
sample_img.show()
print(labels)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', required=True)
parser.add_argument('-img', required=False, action='store_true')
io_args = parser.parse_args()
model = io_args.m
plt.ion() # interactive mode
train_imgs = pk.load(open("data/train_images_512.pk", 'rb'), encoding='bytes')
train_labels = pk.load(open("data/train_labels_512.pk", 'rb'), encoding='bytes')
test_imgs = pk.load(open("data/test_images_512.pk", 'rb'), encoding='bytes')
data_loaders = make_data_loaders()
dataset_sizes = {'train': 56,
'validation': 14,
'test': len(data_loaders['test'].dataset)}
print(dataset_sizes)
class_names = ['covid', 'background']
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
inputs, labels = next(iter(data_loaders['train']))
print("Training sample labels:" + str(labels))
inputs, labels = next(iter(data_loaders['validation']))
print("Validation sample labels:" + str(labels))
if io_args.img:
imshow()
if model == 'res18ft':
# ResNet18
model, criterion, optimizer, scheduler = models.resNet18_ft()
model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_ft)
if model == 'res18conv':
# ResNet18 Conv
model, criterion, optimizer, scheduler = models.resNet18_conv()
model_conv = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_conv)
if model == 'res152conv':
# ResNet152 Conv
model, criterion, optimizer, scheduler = models.resNet152_conv()
model_conv = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_conv)
if model == 'dense161':
# DenseNet161
model, criterion, optimizer, scheduler = models.denseNet161_ft()
model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_ft)
if model == 'vgg19':
# VGG 19-layer model
model, criterion, optimizer, scheduler = models.vgg19()
model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_ft)
if model == 'alex':
# AlexNet
model, criterion, optimizer, scheduler = models.alexNet()
model_ft = fit(model, criterion, optimizer, scheduler, num_epochs=30)
predict(model_ft)