-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathtrain.py
112 lines (85 loc) · 4.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
########################################################################################################
# The RWKV v2-RNN Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import logging
import datetime
import json
from src.model import GPT, GPTConfig
from src.trainer import Trainer, TrainerConfig
from src.utils import Dataset
import torch
import numpy as np
from src.spikingjelly.clock_driven import functional
from src.binidx import MMapIndexedDataset
from accelerate import accelerator
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
### Step 1: set training data ##########################################################################
datafile_train = "enwik8" # txt file or binidx file
datafile_valid = "valid.txt"
datafile_test = "test.txt"
datafile_encoding = 'utf-8'
# datafile_encoding = 'utf-16le'
### Step 2: set model size #############################################################################
ctx_len = 1024 # ===> increase T_MAX in model.py if your ctx_len > 1024
n_layer = 24
n_embd = 768
# 'RWKV' (better for char-level English) or 'RWKV-ffnPre' (better in some cases)
model_type = 'RWKV'
### Step 3: set batch size #############################################################################
# ===> batch_size must be divisible by B_GROUP_FORWARD and B_GROUP_BACKWARD in model.py
# For example, if your batch_size = 20, you can set B_GROUP_FORWARD = 4, B_GROUP_BACKWARD = 2
# If you see "CUDA out of memory", reduce it. Use GPU-Z to find the highest value for your VRAM.
batch_size = 12
### Step 4: set learning rate, training mini-epochs #######################################################
lr_init = 6e-4
lr_final = 1e-5
# the mini-epoch is very short and of fixed length (ctx_len * epoch_length_fixed tokens)
n_epoch = 1000
# 0 = never, 1 = every mini-epoch, 2 = every two mini-epochs, etc.
epoch_save_frequency = 10
epoch_save_path = 'your_path'
epoch_length_fixed = 10000
########################################################################################################
import src.utils
src.utils.set_seed(42) # remember to change seed if you load a model
np.set_printoptions(precision=4, suppress=True, linewidth=200)
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO,)
grad_norm_clip = 1.0
warmup_tokens = 0
betas = (0.9, 0.99)
eps = 4e-9
num_workers = 0
########################################################################################################
# Load data
########################################################################################################
print('loading data... ' + datafile_train)
train_dataset = Dataset(open(
datafile_train, "r", encoding=datafile_encoding).read(), ctx_len, epoch_length_fixed)
#train_dataset = Dataset(MMapIndexedDataset(datafile_train), ctx_len, epoch_length_fixed) #use it when you use binidx files
# valid_dataset = Dataset(open(
# datafile_valid, "r", encoding=datafile_encoding).read(), ctx_len, epoch_length_fixed)
# test_dataset = Dataset(open(
# datafile_test, "r", encoding=datafile_encoding).read(), ctx_len, epoch_length_fixed)
########################################################################################################
# Train model
########################################################################################################
if __name__ == '__main__':
model = GPT(GPTConfig(train_dataset.vocab_size, train_dataset.ctx_len, model_type=model_type,
n_layer=n_layer, n_embd=n_embd)).cuda()
# # load a trained model. remember to change random seed
# m2 = torch.load('medium/trained-30L-768E-936.pth',map_location=torch.device('cpu'))
# model.load_state_dict(m2)
valid_dataset = None
test_dataset = None
print('model', model_type, 'epoch', n_epoch, 'batchsz', batch_size, 'betas',
betas, 'eps', eps, 'ctx', ctx_len, 'layer', n_layer, 'embd', n_embd, )
tconf = TrainerConfig(model_type=model_type, max_epochs=n_epoch, batch_size=batch_size,
learning_rate=lr_init, lr_decay=True, lr_final=lr_final, betas=betas, eps=eps, grad_norm_clip=grad_norm_clip,
warmup_tokens=warmup_tokens, final_tokens=n_epoch*len(train_dataset)*ctx_len, num_workers=num_workers, epoch_save_frequency=epoch_save_frequency, epoch_save_path=epoch_save_path)
trainer = Trainer(model, train_dataset, valid_dataset, test_dataset, tconf)
trainer.train()
torch.save(model.state_dict(), 'trained-' + str(n_epoch) + '-' + trainer.get_run_name() +
'-' + datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S') + '.pth')