-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSiameseNN.py
67 lines (52 loc) · 2.63 KB
/
SiameseNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Created by Ridwan Afwan Karim Fauzi
# https://www.github.com/ridwanakf
import tensorflow as tf
class SiameseNN:
# Create Model
def __init__(self, num_of_input_features):
self.input1 = tf.placeholder(tf.float32, [None, num_of_input_features], name='input1')
self.input2 = tf.placeholder(tf.float32, [None, num_of_input_features], name='input2')
with tf.variable_scope('SiameseNN') as scope:
self.output1 = self.create_network(self.input1)
scope.reuse_variables()
self.output2 = self.create_network(self.input2)
# Define loss
self.y_true = tf.placeholder(tf.float32, [None])
self.loss = self.compute_loss(bias = 5.0)
# Setup Networks
def create_network(self, input):
dense1 = self.dense(input, 1024, 'dense1')
activation_func1 = tf.nn.relu(dense1)
dense2 = self.dense(activation_func1, 1024, 'dense2')
activation_func2 = tf.nn.relu(dense2)
dense3 = self.dense(activation_func2, 2, 'dense3')
return dense3
# Setup Dense Neurons
def dense(self, input_layer, num_of_weights, name):
# Check the dimension of input tensor
assert len(input_layer.get_shape()) == 2
num_of_prev_weight = input_layer.get_shape()[1]
init_normal = tf.truncated_normal_initializer(stddev=0.01)
W = tf.get_variable(name+'_W', dtype=tf.float32,
shape=[num_of_prev_weight, num_of_weights], initializer=init_normal)
b = tf.get_variable(name+'_b', dtype=tf.float32,
initializer=tf.constant(0.01, shape=[num_of_weights], dtype=tf.float32))
xW = tf.matmul(input_layer, W)
dense = tf.nn.bias_add(xW, b)
return dense
# Compute the loss function
def compute_loss(self, bias):
# using contrastive loss function
margin = tf.constant(bias, name='margin')
# label for positive (similar) inputs
pos_label = self.y_true
# label for negatif (not similar) inputs
neg_label = tf.subtract(1.0, self.y_true, name='1-y')
feature_distance = tf.pow(tf.subtract(self.output1, self.output2), 2)
feature_distance = tf.reduce_sum(feature_distance, 1, name='dist2')
sqrt_feature_distance = tf.sqrt(feature_distance+1e-6, name='dist')
positive = tf.multiply(pos_label, feature_distance, name='pos')
negative = tf.multiply(neg_label, tf.pow(tf.maximum(tf.subtract(margin, sqrt_feature_distance), 0.0), 2), name='neg')
losses = tf.add(positive,negative, name='losses')
loss = tf.reduce_mean(losses, name='loss')
return loss