-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_rgb.py
424 lines (351 loc) · 16 KB
/
simple_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
import os
import time
import sys
import pickle
import matplotlib.pyplot as plt
from keras_robsanpam.image import ImageDataGeneratorMod
from keras_robsanpam.resnet152 import ResNet152
from keras.applications.resnet50 import ResNet50
from keras import backend as K
from keras.models import Model, Sequential, model_from_json
from keras.layers import Input, Dense, Dropout, Flatten, Conv2D
from keras.engine.topology import get_source_inputs
import tensorflow as tf
from tqdm import tqdm
from keras.regularizers import l2
from keras.activations import get
def set_regularization(model,
apply_to,
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
beta_regularizer=None,
gamma_regularizer=None
):
if apply_to == 'all':
layers = model.layers
else:
layers = [l for l in model.layers if str(l.name) in apply_to]
for layer in layers:
# set kernel_regularizer
if kernel_regularizer is not None and hasattr(layer, 'kernel_regularizer'):
layer.kernel_regularizer = kernel_regularizer
# set bias_regularizer
if bias_regularizer is not None and hasattr(layer, 'bias_regularizer'):
layer.bias_regularizer = bias_regularizer
# set activity_regularizer
if activity_regularizer is not None and hasattr(layer, 'activity_regularizer'):
layer.activity_regularizer = activity_regularizer
# set beta and gamma of BN layer
if beta_regularizer is not None and hasattr(layer, 'beta_regularizer'):
layer.beta_regularizer = beta_regularizer
if gamma_regularizer is not None and hasattr(layer, 'gamma_regularizer'):
layer.gamma_regularizer = gamma_regularizer
out = model_from_json(model.to_json())
out.set_weights(model.get_weights())
return out
def create_generators(y_dict, batch_size=16):
image_generator = ImageDataGeneratorMod(rescale=1./255)
print("\nLoading train set...")
train_generator = image_generator.flow_from_directory(
traindir,
target_size=(224,224),
batch_size=batch_size,
shuffle=True,
class_mode='multilabel',
multilabel_classes=y_dict,
seed=1)
print("\nLoading test set...")
val_generator = image_generator.flow_from_directory(
valdir,
target_size=(224,224),
batch_size=batch_size,
shuffle=True,
class_mode='multilabel',
multilabel_classes=y_dict,
seed=1)
return train_generator, val_generator
def run_epoch_on_generator(sess,
num_classes,
generator,
batch_size=None,
epoch=None,
epochs=None,
training=True,
steps_per_epoch=None,
lr=None):
loss_list = []
acc_list = []
tp = np.zeros((1, num_classes))
fp = np.zeros((1, num_classes))
fn = np.zeros((1, num_classes))
for i in tqdm(range(steps_per_epoch), desc="Epoch {}/{} - {}: ".format(
epoch, epochs, "Training" if training else " Testing")):
batch_X, batch_y = next(generator)
if training:
step, loss_value, acc, utp, ufp, ufn = sess.run([train_op, loss_op, acc_op, tp_op, fp_op, fn_op],
feed_dict={X:batch_X, y:batch_y,
K.learning_phase():1, lr_placeholder:lr})
else:
loss_value, acc, utp, ufp, ufn = sess.run([loss_op, acc_op, tp_op, fp_op, fn_op],
feed_dict={X:batch_X, y:batch_y,
K.learning_phase():0})
loss_list.append(loss_value)
acc_list.append(acc)
tp += utp
fp += ufp
fn += ufn
precision = tp / (tp + fp + 1e-07)
recall = tp / (tp + fn + 1e-07)
f1 = 2 * precision * recall / (precision + recall + 1e-07)
return loss_list, acc_list, f1
# Optimizations
os.environ["KMP_BLOCKTIME"] = '30' # Sleep threads instantly after parallel exec.
os.environ["OMP_NUM_THREADS"]= '6' # Number of physical cores
os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Filter out INFO and WARNING logs
config = tf.ConfigProto(inter_op_parallelism_threads=1)
session = tf.Session(config=config)
K.set_session(session)
logsdir = './logs/'
# sys.stdout = open(logsdir+'process.stdout', 'w')
print(time.strftime("%a, %d, %b %Y, %H:%M:%S"))
start_time = time.time()
#Main Settings
maindir = '/home/aurora-cc/robsanpam/FERA17DB-OFT-h224-w224-v6/'
traindir = maindir+"images/train/"
valdir = maindir+"images/valid/"
y_labels_path = maindir+"meta/all_y_labels.p"
K.set_image_data_format("channels_last")
input_size = (224, 224, 3)
num_classes = 5
batch_size = 32
epochs = 30
# Adam
beta1 = 0.5 # default is 0.9
beta2 = 0.999 # default is 0.999
# Weight decay
wdecay = True
wd_apply_to = 'all' #['fc1000', 'logits_last'] # 'all'
wdecay_val = 0.026
# Training
train_all = False
train_sections = 6
weights = 'imagenet' # 'imagenet' or None
# Early stopping
early_stopping = True
stopping_criteria = 4 # Epochs without improvement that stops the program
# Learning rate reduction
lr_reduction = True
lr = 0.001 # This is the starting learning rate
factor = 0.1 # Factor to multiply current learning rate
min_lr = 1e-6 # Minimum value of the learning rate
patience = 2 # Epochs without improvement that triggers a reduction
assert weights in ['imagenet', None]
#load labels
y_dict = pickle.load(open(y_labels_path, "rb"))
print("\nCreating generators...\n")
train_generator, val_generator = create_generators(y_dict, batch_size)
t_steps = train_generator.samples//batch_size
v_steps = val_generator.samples//batch_size
print("\nCreating model...")
X = Input(shape=(input_size[0], input_size[1], input_size[2],))
y = tf.placeholder(tf.float32, [None, num_classes], name='y')
with tf.variable_scope('resnet50'):
resnet = ResNet50(include_top=False
,input_tensor=X
,weights=weights
,pooling='avg' # original implementation uses avg
)
# Change activation of last fully connected layer...
#resnet.get_layer('fc1000').activation = get('relu')
newfc1000 = Dense(1000, activation='softmax', name='fc1000')(resnet.output)
output = Dense(num_classes, activation=None, name='logits_last')(newfc1000)
whole_model = Model(resnet.input, output, name='whole_Model')
# Show final model
whole_model.summary()
# Apply wd
if wdecay:
l2_reg = l2(wdecay_val)
whole_model = set_regularization(model=whole_model,
apply_to=wd_apply_to,
kernel_regularizer=l2_reg,
bias_regularizer=l2_reg,
activity_regularizer=None,
beta_regularizer=None,
gamma_regularizer=None)
model = model_from_json(whole_model.to_json())
model.set_weights(whole_model.get_weights())
whole_model=None
# Selecting variables to train
train_vars = []
train_layers = []
section_layers = np.array([])
if train_sections <= 6:
section_layers = np.append(section_layers, ['fc1000'], axis = 0)
if train_sections <= 5:
section_layers = np.append(section_layers, ['res5a_branch2a', 'bn5a_branch2a', 'activation_41',
'res5a_branch2b', 'bn5a_branch2b', 'activation_42',
'res5a_branch2c', 'res5a_branch1', 'bn5a_branch2c',
'bn5a_branch1', 'add_14', 'activation_43',
'res5b_branch2a','bn5b_branch2a', 'activation_44',
'res5b_branch2b','bn5b_branch2b', 'activation_45',
'res5b_branch2c', 'bn5b_branch2c', 'add_15',
'activation_46', 'res5c_branch2a', 'bn5c_branch2a',
'activation_47', 'res5c_branch2b', 'bn5c_branch2b',
'activation_48', 'res5c_branch2c', 'bn5c_branch2c',
'add_16', 'activation_49', 'global_max_pooling2d_1',
'fc1000'], axis = 0)
if train_sections <= 4:
section_layers = np.append(section_layers, ['res4a_branch2a', 'bn4a_branch2a', 'activation_23',
'res4a_branch2b', 'bn4a_branch2b', 'activation_24',
'res4a_branch2c', 'res4a_branch1', 'bn4a_branch2c',
'bn4a_branch1', 'add_8', 'activation_25',
'res4b_branch2a', 'bn4b_branch2a', 'activation_26',
'res4b_branch2b', 'bn4b_branch2b', 'activation_27',
'res4b_branch2c', 'bn4b_branch2c', 'add_9',
'activation_28', 'res4c_branch2a', 'bn4c_branch2a',
'activation_29', 'res4c_branch2b', 'bn4c_branch2b',
'activation_30', 'res4c_branch2c', 'bn4c_branch2c',
'add_10', 'activation_31', 'res4d_branch2a',
'bn4d_branch2a', 'activation_32', 'res4d_branch2b',
'bn4d_branch2b', 'activation_33', 'res4d_branch2c',
'bn4d_branch2c', 'add_11', 'activation_34',
'res4e_branch2a', 'bn4e_branch2a', 'activation_35',
'res4e_branch2b', 'bn4e_branch2b', 'activation_36',
'res4e_branch2c', 'bn4e_branch2c', 'add_12',
'activation_37', 'res4f_branch2a', 'bn4f_branch2a',
'activation_38', 'res4f_branch2b', 'bn4f_branch2b',
'activation_39', 'res4f_branch2c', 'bn4f_branch2c',
'add_13', 'activation_40'], axis =0)
for layer in model.layers:
if train_all == True:
train_vars.append(layer.trainable_weights)
train_layers.append(layer.name)
elif str(layer.name).split('_')[-1] == 'last' or str(layer.name) in section_layers:
train_vars.append(layer.trainable_weights)
train_layers.append(layer.name)
print('\nTraining layers:')
print(train_layers)
logits = model(X)
probabilities = tf.nn.sigmoid(logits)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=y)
loss_op = tf.cast(tf.reduce_mean(xentropy), tf.float32)
lr_placeholder = tf.placeholder(tf.float32, [], name='learning_rate')
opt = tf.train.AdamOptimizer(learning_rate=lr_placeholder,
beta1=beta1,
beta2=beta2)
train_op = opt.minimize(loss_op, var_list=[train_vars])
correct = tf.equal(tf.round(probabilities), y)
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
tp_op = tf.reduce_sum(
tf.transpose(
tf.to_float(
tf.logical_and(
tf.equal(tf.transpose(y), True),
tf.equal(tf.transpose(tf.round(probabilities)), True)
)
)
), 0)
fp_op = tf.reduce_sum(
tf.transpose(
tf.to_float(
tf.logical_and(
tf.equal(tf.transpose(y), False),
tf.equal(tf.transpose(tf.round(probabilities)), True)
)
)
), 0)
fn_op = tf.reduce_sum(
tf.transpose(
tf.to_float(
tf.logical_and(
tf.equal(tf.transpose(y), True),
tf.equal(tf.transpose(tf.round(probabilities)), True)
)
)
), 0)
best_f1 = -1.0
logs = np.empty((0,7))
with K.get_session() as sess:
print("\nTraining ...\n")
for epoch in range(epochs):
train_loss_list, train_acc_list, train_f1 = run_epoch_on_generator(sess,
num_classes,
train_generator,
batch_size=batch_size,
epoch=epoch+1,
epochs=epochs,
training=True,
steps_per_epoch=t_steps,
lr=lr)
valid_loss_list, valid_acc_list, valid_f1 = run_epoch_on_generator(sess,
num_classes,
val_generator,
batch_size=batch_size,
epoch=epoch+1,
epochs=epochs,
training=False,
steps_per_epoch=v_steps)
train_acc = np.array(train_acc_list).mean()
valid_acc = np.array(valid_acc_list).mean()
train_loss = np.hstack(train_loss_list).mean()
valid_loss = np.hstack(valid_loss_list).mean()
epoch_log = np.array((train_loss,
valid_loss,
train_acc,
valid_acc,
train_f1,
valid_f1,
lr), ndmin=2)
logs = np.vstack((logs, epoch_log))
info_str = "Training Loss: {} \nTraining Accuracy {} \nTraining F1: {} - Individual: {} \nValidation Loss: {} \nValidation accuracy: {} \nValidation F1: {} - Individual: {} \nLearning Rate: {}\n".format(
train_loss,
train_acc,
np.mean(train_f1),
train_f1,
valid_loss,
valid_acc,
np.mean(valid_f1),
valid_f1,
lr)
try:
f = open(logsdir+'epoch_logs.pickle', 'wb')
pickle.dump(logs, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to '+logsdir+'epoch_logs.pickle:', e)
raise
print(info_str)
if np.mean(valid_f1) > best_f1:
best_f1 = np.mean(valid_f1)
sc = stopping_criteria
lrp = patience
# Save the weights
model.save_weights(logsdir+'model_weights.h5')
# Save the model architecture
with open(logsdir+'model_architecture.json', 'w') as f:
f.write(model.to_json())
print('New best model saved successfully...\n')
else:
if not epochs == epoch:
if early_stopping:
sc -= 1
if sc == 0:
print("Stopping early!")
break
if lr_reduction:
lrp -= 1
if lrp == 0:
lrp = patience
lr *= factor
if lr<min_lr:
print('Minimum learning rate', str(lr),'reached')
lr = min_lr
else:
print('Reducing learning rate to', str(lr))
print()
print()
print("\nTotal time: %.1d seconds." % (time.time()-start_time))
print('Done.\n')