-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathanalyze.py
712 lines (592 loc) · 18.8 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import pyqtgraph as pg
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
import cv2
import os
import re
import sys
TARGET_DIR = "data/target"
RENDER_DIR = "data/render"
RENDER_STR = "{}.png"
DEBUG = False
class Render:
def __init__(self, font=None, symbol=None):
self.T0 = np.eye(3, 3)
self.S0 = np.eye(3, 3)
self.Tc = np.eye(3, 3)
self.St = np.eye(3, 3)
self.Tt = np.eye(3, 3)
self.Rt = np.eye(3, 3)
self.sigma = 0.01
self.img = None
self.target_shape = None
self.box = None
self.font = font
self.symbol = symbol
self.angle = 0.0
if (font != None) and (symbol != None):
self.load_symbol(font, symbol)
def load_file(self, img_file):
#print("Load image %s" % img_file)
self.img = cv2.imread(img_file, 0)
self.img = cv2.GaussianBlur(self.img, (11,11), 0)
assert type(self.img) == np.ndarray
def load_symbol(self, font, symbol):
img_name = RENDER_STR.format(symbol)
img_file = os.path.join(RENDER_DIR, font, img_name)
self.load_file(img_file)
def set_shape(self, target_shape):
f,c = target_shape
assert f > 0 and c > 0
self.target_shape = target_shape
def show(self, img = None):
if type(img) != np.ndarray:
img = self.img
assert type(img) == np.ndarray
view = pg.GraphicsView()
l = pg.GraphicsLayout(border=(100,100,100))
view.setCentralItem(l)
view.show()
ii = pg.ImageItem(img.astype(np.float).T)
vb = l.addViewBox(lockAspect=True, invertY=True)
vb.addItem(ii)
QtGui.QApplication.exec_()
def box_sobel(self, img):
SOBEL_K = 3
K = 0.1
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=SOBEL_K).astype(np.float)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=SOBEL_K).astype(np.float)
fil, col = img.shape
maskx = 1 + np.tile(np.arange(col), (fil,1))
maskx_ = maskx[::,::-1]
masky = 1 + np.tile(np.arange(fil).reshape((fil,1)), (1, col))
masky_ = masky[::-1,::]
distx = np.absolute(sobelx) * np.exp(-maskx*K)
distx_ = np.absolute(sobelx) * np.exp(-maskx_*K)
disty = np.absolute(sobely) * np.exp(-masky*K)
disty_ = np.absolute(sobely) * np.exp(-masky_*K)
_, _, _, x0 = cv2.minMaxLoc(distx)
_, _, _, x1 = cv2.minMaxLoc(distx_)
_, _, _, y0 = cv2.minMaxLoc(disty)
_, _, _, y1 = cv2.minMaxLoc(disty_)
x0y, x0x = x0
x1y, x1x = x1
y0y, y0x = y0
y1y, y1x = y1
box = (x0y, x1y+1, y0x, y1x+1)
return box
def bound_render(self):
x0, x1, y0, y1 = self.box_sobel(self.img)
self.box = (x0, x1, y0, y1)
self.render_shape = (y1-y0+2, x1-x0+2)
#print("Render shape = {}".format(self.render_shape))
ht,wt = self.target_shape
hr,wr = self.render_shape
#pt = float(wt) / float(ht)
pr = float(wr) / float(hr)
#print("Proportion target = {}".format(pt))
#print("Proportion render = {}".format(pr))
# Proporcion de target
#hre = int(round(wt / pt))
#wre = int(round(ht * pt))
# Proporcion de render
#hre = int(round(wt / pr))
wre = int(round(ht * pr))
self.render_size = (ht, wre)
#print('Render size {}'.format(self.render_size))
def show_render(self):
render = self.get_img()
self.show(render)
def get_img(self):
M = np.dot(self.S0, self.T0)
M = np.dot(self.Tc, M)
M = np.dot(self.St, M)
M = np.dot(self.Rt, M)
M = np.dot(np.linalg.inv(self.Tc), M)
M = np.dot(self.Tt, M)
#print(M)
#print("Render size: {}".format(self.render_size))
y,x = self.render_size
render = 255 - cv2.warpPerspective(255 - self.img, M, (x,y),
# borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC)
borderMode=cv2.BORDER_CONSTANT,
#flags=cv2.INTER_CUBIC+cv2.WARP_FILL_OUTLIERS
flags=cv2.INTER_AREA+cv2.WARP_FILL_OUTLIERS
# fillval=(255,255,255,0)
)
render = cv2.GaussianBlur(render, (5,5), self.sigma)
return render
def set_T0(self):
x0, _, y0, _ = self.box
self.T0[0, 2] = -x0 - 1
self.T0[1, 2] = -y0 - 1
def set_S0(self):
assert self.target_shape != None
ht,wt = self.target_shape
hr,wr = self.render_shape
s = float(ht) / float(hr)
self.S0[0, 0] = s
self.S0[1, 1] = s
def set_Tc(self):
h, w = self.render_size
self.Tc[0, 2] = -w/2.
self.Tc[1, 2] = -h/2.
def set_St(self):
self.St[0, 0] = 0.8
self.St[1, 1] = 0.8
def set_angle(self, angle):
self.angle = angle
self.Rt[0,0] = np.cos(angle)
self.Rt[0,1] = -np.sin(angle)
self.Rt[1,0] = np.sin(angle)
self.Rt[1,1] = np.cos(angle)
def prepare_shape(self, target_shape):
self.set_shape(target_shape)
self.bound_render()
self.set_T0()
self.set_S0()
self.set_Tc()
self.set_St()
class Target:
def __init__(self, target_file):
self.path = target_file
self.load_file(target_file)
self.size = self.img.size
self.otsu()
self.normalize(self.img, self.otsu)
self.img = self.expand_hist(self.img)
self.crop_target()
self.extract_info(target_file)
def extract_info(self, target):
self.name = os.path.basename(target)
dir_char = os.path.dirname(target)
self.char = os.path.basename(dir_char)
dir_font = os.path.dirname(dir_char)
self.font = os.path.basename(dir_font)
def load_file(self, img_file):
#print("Load image %s" % img_file)
self.img = cv2.imread(img_file, 0)
assert type(self.img) == np.ndarray
if self.img.shape[0] > 100:
self.adjust_size()
def adjust_size(self):
f, c = self.img.shape
s = 100. / float(f)
y,x = (100, int(c*s))
self.img = cv2.resize(self.img, (x, y), interpolation=cv2.INTER_AREA)
def expand_hist(self, img):
minv,maxv,minl,maxl = cv2.minMaxLoc(img)
if(maxv-minv == 0): return img
imgf = img.astype(np.float)
imgf = (imgf - minv) / (maxv-minv) * 255
img = imgf.astype(np.uint8)
return img
def hist_map(self, img, fmin, fmax):
'''Coloca el valor fmin en 0 y fmax en 255.'''
imgf = img.astype(np.float)
imgf = (imgf - fmin) / (fmax-fmin) * 255.
imgf[imgf > 255] = 255
imgf[imgf < 0] = 0
img = imgf.astype(np.uint8)
return img
def normalize(self, img, otsu):
inv_otsu = 255 - otsu
t = self.otsu_value
img[img < t]
img_white = img[img > t]
img_black = img[img <= t]
white_mean = np.mean(img_white)
black_mean = np.mean(img_black)
white_var = np.var(img_white)
black_var = np.var(img_black)
black_th = min(20, black_mean)
img_expand = self.hist_map(self.img, black_th, white_mean)
if DEBUG:
print('Otsu value {}'.format(self.otsu_value))
print("White mean {}, variance {}".format(white_mean, white_var))
print("Black mean {}, variance {}".format(black_mean, black_var))
cv2.imshow('expand', img_expand)
cv2.waitKey(1)
self.img = img_expand
def otsu(self):
v,th_otsu = cv2.threshold(self.img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
self.otsu = th_otsu
self.otsu_value = v
def box_otsu(self, img):
K = 1
inv = 255 - self.otsu
nz = inv.nonzero()
h,w = img.shape
x0, x1 = (np.min(nz[1]), np.max(nz[1]))
y0, y1 = (np.min(nz[0]), np.max(nz[0]))
x0, x1 = (np.max([x0-K, 0]), np.min([w-1, x1+K+1]))
y0, y1 = (np.max([y0-K, 0]), np.min([h-1, y1+K+1]))
box = (x0, x1+1, y0, y1+1)
#return img[y0:y1+1,x0:x1+1]
return box
def box_sobel(self, img):
SOBEL_K = 3
K = 0.1
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=SOBEL_K).astype(np.float)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=SOBEL_K).astype(np.float)
fil, col = img.shape
maskx = 1 + np.tile(np.arange(col), (fil,1))
maskx_ = maskx[::,::-1]
masky = 1 + np.tile(np.arange(fil).reshape((fil,1)), (1, col))
masky_ = masky[::-1,::]
distx = np.absolute(sobelx) * np.exp(-maskx*K)
distx_ = np.absolute(sobelx) * np.exp(-maskx_*K)
disty = np.absolute(sobely) * np.exp(-masky*K)
disty_ = np.absolute(sobely) * np.exp(-masky_*K)
_, _, _, x0 = cv2.minMaxLoc(distx)
_, _, _, x1 = cv2.minMaxLoc(distx_)
_, _, _, y0 = cv2.minMaxLoc(disty)
_, _, _, y1 = cv2.minMaxLoc(disty_)
x0y, x0x = x0
x1y, x1x = x1
y0y, y0x = y0
y1y, y1x = y1
box = (x0y, x1y+1, y0x, y1x+1)
return box
def crop_target(self):
#box = self.box_sobel(self.img)
box = self.box_otsu(self.img)
#self.img = 255 - cv2.bitwise_and(255 - self.img, self.mask)
#print("Target pre box = {}".format(box))
x0, x1, y0, y1 = box
self.target_shape = (y1-y0+2, x1-x0+2)
f, c = self.target_shape
mf, mc = self.img.shape
#print("Target shape = {}".format(self.target_shape))
x0 = int(max(0, round(x0 - c * 0.1)))
x1 = int(min(mc-1, round(x1 + c * 0.1)))
y0 = int(max(0, round(y0 - f * 0.1)))
y1 = int(min(mf-1, round(y1 + f * 0.1)))
self.box = (x0, x1, y0, y1)
self.target_shape = (y1-y0+2, x1-x0+2)
#print("Target box = {}".format(self.box))
def get_shape(self):
return self.target_shape
def show_target(self):
target = self.get_img()
self.show(target)
def get_img(self):
x0, x1, y0, y1 = self.box
target = self.img[y0:y1, x0:x1]
return target
def show(self, img = None):
if type(img) != np.ndarray:
img = self.img
assert type(img) == np.ndarray
view = pg.GraphicsView()
l = pg.GraphicsLayout(border=(100,100,100))
view.setCentralItem(l)
view.show()
ii = pg.ImageItem(img.astype(np.float).T)
vb = l.addViewBox(lockAspect=True, invertY=True)
vb.addItem(ii)
QtGui.QApplication.exec_()
class Compare:
def __init__(self, target, render):
self.target = target
self.render = render
def compare(self):
render = self.render.get_img()
target = self.target.get_img()
target, render = self.fill_shape(target, render)
sim = self.compare_img(target, render)
return (target, render, sim)
def iterative_fit(self):
K = 0.2
ERR_MIN = 0.01
target, render = (None, None)
max_sim = 0.0
for i in range(150):
target, render, sim = self.compare()
dx, dy = self.fine_tune(target, render)
#print("Fine tune {}".format((dx, dy)))
self.render.Tt[0, 2] += -dx * K
self.render.Tt[1, 2] += -dy * K
#if sim == max_sim: break
max_sim = max(max_sim, sim)
#diff = cv2.absdiff(target, render)
#self.show([target, render, diff])
#print("{:2.2f} for {}".format(max_sim*100.0, self.render.font))
return max_sim
def compare_img(self, target, render):
font = self.render.font
size = self.target.size
diff = cv2.absdiff(target, render)
diff_minus = 128. + (target.astype(float) - render.astype(float))/2.0
diff_minus = self.expand_hist(diff_minus.astype(np.uint8))
sum_diff = np.sum(diff)
inv_target_max = np.sum(255 - target)
#res = np.hstack((target, render))
#diff_count = np.count_nonzero(diff)
#sim = 1.0 - float(diff_count)/float(target.size)
#sim = 1.0 - float(sum_diff) / float(diff.size*255)
sim = 1.0 - float(sum_diff) / float(inv_target_max)
#print("Similarity {:.2f}% for {}".format(sim*100, font))
#self.show([target, render, diff])
if 1:
if DEBUG:
cv2.imshow('target ', target)
cv2.imshow('render ', render)
cv2.imshow('diff minus', diff_minus)
cv2.imshow('diff ', diff)
cv2.waitKey(1)
return sim
def expand_hist(self, img):
minv,maxv,minl,maxl = cv2.minMaxLoc(img)
if(maxv-minv == 0): return img
imgf = img.astype(np.float)
imgf = (imgf - minv) / (maxv-minv) * 255
img = imgf.astype(np.uint8)
return img
def fill_shape(self, target, render):
tf, tc = target.shape
rf, rc = render.shape
f = max(tf, rf)
c = max(tc, rc)
nt = 255 + np.zeros((f,c), dtype=np.uint8)
nr = 255 + np.zeros((f,c), dtype=np.uint8)
nt[0:tf, 0:tc] = target
nr[0:rf, 0:rc] = render
return (nt, nr)
def fine_tune(self, target, render):
'''Calcula el desplazamiento que debe aplicarse sobre render para
colocarse en target'''
SOBEL_K = 3
df_dx = cv2.Sobel(target, cv2.CV_64F, 1, 0, ksize=SOBEL_K).astype(np.float)
df_dy = cv2.Sobel(target, cv2.CV_64F, 0, 1, ksize=SOBEL_K).astype(np.float)
f = target.astype(float)
g = render.astype(float)
diff = (f-g) / 255.
mx = df_dx * diff
my = df_dy * diff
incx = np.sum(mx) / np.sum(np.abs(mx))
incy = np.sum(my) / np.sum(np.abs(my))
RAND_DK = 0.5
rand_dx = (np.random.random_sample()-0.5) * RAND_DK
rand_dy = (np.random.random_sample()-0.5) * RAND_DK
incx += rand_dx
incy += rand_dy
#print("incx = {}, incy = {}".format(incx, incy))
(s, Sn) = self.fine_scale((mx, -my), render.shape)
RAND_SK = 0.005
rand_s = (np.random.random_sample() - 0.5) * RAND_SK
s += rand_s
self.render.St[0,0] *= s
self.render.St[1,1] *= s
dsigma = 0
dsigma = self.fine_smooth(target, render, diff)
#self.fine_rotation(target, render, diff)
#pgplot.add_imgs(l, [diff, mx, my])
#return (incx, incy, s, mx, my, Sn)
#print("{:2.3f}\t{:2.3f}\t{:2.3f}\t{:2.3f}".format(incx, incy, s, dsigma))
return (incx, incy)
def fine_scale(self, m, shape):
K = 1.0
N, M = shape
m = m/np.max(np.abs(m))
PMx, PMy = (-m[0], -m[1])
#PMx, PMy = (m[0], m[1])
OC = np.array([(M-1)/2.,(N-1)/2.])
OP = np.zeros([N, M, 2])
for i in range(N):
for j in range(M):
OP[i,j] = [j, N-i-1]
CP = OP - OC
PM = np.array([PMx, PMy])
PM = PM.reshape([2,N*M]).T.reshape([N,M,2])
CM = CP + PM
CPn = np.sqrt(CP[:,:,0]**2 + CP[:,:,1]**2)
CPn[(N-1)/2,(M-1)/2] = 1
CPb = np.zeros([N, M, 2])
CPb[:,:,0] = CP[:,:,0] / CPn
CPb[:,:,1] = CP[:,:,1] / CPn
CQ = CM * CPb
CQn = CQ[:,:,0] + CQ[:,:,1]
Sn = CQn/CPn
Sn[(N-1)/2-(N-1)/10:(N-1)/2+(N-1)/10,(M-1)/2-(M-1)/10:(M-1)/2+(M-1)/10] = 1
s = np.sum(Sn)/(N*M)
s = 1+((s-1)*K)
#print("Mejor escalado = {}".format(s))
#self.show([PMx, PMy, CPb[:,:,0], CPb[:,:,1], CQn, Sn])
return (s, Sn)
def fine_smooth(self, target_img, render_img, diff_img):
SIGMA_INC = 0.5
K = 0.03
SIGMA_DIFF = 0.4
sigma2 = self.render.sigma + SIGMA_INC
render_smooth = cv2.GaussianBlur(render_img.astype(float), (5,5), sigma2)
diff_smooth = (render_smooth - render_img)/255.
h = diff_smooth * diff_img
diff_sigma = np.sum(h) / np.sum(np.abs(h))
diff_sigma = np.nan_to_num(diff_sigma)
dsigma = (diff_sigma-SIGMA_DIFF) * K
#self.show([target_img, diff_img, render_img, render_smooth, diff_smooth,h])
RAND_SIGMA = 0.01
rand_sigma = (np.random.random_sample()-0.5) * RAND_SIGMA
dsigma += rand_sigma
self.render.sigma += dsigma
#print("dsigma = {}".format(dsigma))
#print("Render sigma = {}".format(self.render.sigma))
return dsigma
def fine_rotation(self, target_img, render_img, diff_img):
angle0 = self.render.angle
INC_ANGLE = 0.01
K = 0.001
render0 = render_img.astype(float)
self.render.set_angle(angle0 + INC_ANGLE)
render1 = self.render.get_img().astype(float)
self.render.set_angle(angle0)
target_img, render1_filled = self.fill_shape(target_img, render1)
f = target_img.astype(float)
diff_angle = (render1_filled - render0) / INC_ANGLE
diff_target = f - render0
field = diff_target / (diff_angle + 1)
n,m = field.shape
inc_angle = np.sum(field) / np.sum(np.abs(field)) * K
#print(inc_angle)
self.render.set_angle(angle0 + inc_angle)
#self.show([target_img, diff_target, render0, render1_filled, diff_angle,field])
cv2.imshow('rot ', self.expand_hist(field))
#cv2.waitKey(500)
cv2.waitKey(1)
def show(self, img_list):
view = pg.GraphicsView()
l = pg.GraphicsLayout(border=(100,100,100))
view.setCentralItem(l)
view.show()
for img in img_list:
ii = pg.ImageItem(img.astype(np.float).T)
vb = l.addViewBox(lockAspect=True, invertY=True)
vb.addItem(ii)
QtGui.QApplication.exec_()
class Recognize:
def __init__(self, target, char):
self.target = target
self.char = char
def natural_sort(self, l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def recognize_font(self):
if DEBUG:print("Idendify {}".format(self.target.path))
render_names = self.natural_sort(os.listdir(RENDER_DIR))
best_font = None
max_sim = 0.0
results = []
for font in render_names:
r = Render(font, self.char)
r.prepare_shape(self.target.get_shape())
c = Compare(self.target, r)
sim = c.iterative_fit()
if sim > max_sim:
max_sim = sim
best_font = font
results.append((font, sim))
if DEBUG:print("{:2.2f} for {}".format(sim*100.0, font))
if DEBUG:print("Best font is {} at {:2.2f}".format(best_font, max_sim*100.0))
return (best_font, results)
class Analize:
def __init__(self):
self.target_names = self.find_targets(TARGET_DIR)
def natural_sort(self, l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def find_targets(self, dir_name):
result = []
for root, dirs, files in os.walk(dir_name):
for name in files:
result.append(os.path.join(root, name))
return self.natural_sort(result)
def extract_info(self, target):
name = os.path.basename(target)
dir_char = os.path.dirname(target)
char = os.path.basename(dir_char)
dir_font = os.path.dirname(dir_char)
font = os.path.basename(dir_font)
return (font, char, name)
def compare(self, target, font):
r = Render(font, target.char)
r.prepare_shape(target.get_shape())
c = Compare(target, r)
sim = c.iterative_fit()
return sim
def print_cell(self, value):
sys.stdout.write('{:2.1f}%\t'.format(value*100.))
sys.stdout.flush()
def print_header(self):
fonts = self.natural_sort(os.listdir(RENDER_DIR))
for font in fonts:
sys.stdout.write('{:.7}\t'.format(font))
print('f s Target file')
def family(self, font_name):
p = re.compile('[^0-9]+')
m = p.match(font_name)
return m.group(0)
def print_table(self):
fonts = self.natural_sort(os.listdir(RENDER_DIR))
self.print_header()
font_err = 0
fam_err = 0
for target_file in self.target_names:
t = Target(target_file)
target_family = self.family(t.font)
bes_font = None
max_s = 0.0
for font in fonts:
s = self.compare(t, font)
self.print_cell(s)
if(s > max_s):
best_font = font
max_s = s
best_family = self.family(best_font)
if best_family == target_family:
sys.stdout.write('+f ')
else:
sys.stdout.write('-f ')
fam_err+=1
if best_font == t.font:
sys.stdout.write('+s ')
else:
sys.stdout.write('-s ')
font_err+=1
print('{}'.format(target_file))
print("{}/{} family errors.".format(fam_err, len(self.target_names)))
print("{}/{} font and size errors.".format(font_err, len(self.target_names)))
def all(self):
errors = 0
self.table = []
for target_file in self.target_names:
font, char, name = self.extract_info(target_file)
#print("Font {}, char {}, file {}".format(
# font, char, name))
t = Target(target_file)
best, results = Recognize(t, char).recognize_font()
self.table.append((target_file, results))
def main():
app = QtGui.QApplication([])
#target_file = 'data/target/cmr10/a/IMG_0044.png'
#target_file = 'data/target/lucida-bright-regular/a/a1-jahne.png'
#target_file = 'data/target/cmr10/b/1.png'
#target_file = 'data/target/cmr10/a/big1.png'
if len(sys.argv) == 2:
target_file = sys.argv[1]
t = Target(target_file)
#t.show_target()
#r = Render('lucida-bright-regular', 'a')
#r = Render('cmr10', 'b')
#r.prepare_shape(t.get_shape())
#r.show_render()
#c = Compare(t, r)
#c.iterative_fit()
Recognize(t, t.char).recognize_font()
else:
Analize().print_table()
if __name__ == '__main__':
if len(sys.argv) == 2: DEBUG = True
main()