Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Test failure with sklearn 1.6.0 #160

Open
penguinpee opened this issue Dec 21, 2024 · 0 comments
Open

Test failure with sklearn 1.6.0 #160

penguinpee opened this issue Dec 21, 2024 · 0 comments
Labels
bug Something isn't working

Comments

@penguinpee
Copy link

System information
OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Fedora 42 (rawhide)
Sklearn-genetic-opt version: 0.11.1
Scikit-learn version: 1.6.0
Python version: 3.13.1

Describe the bug
Two tests fail with sklearn 1.6.0:

=================================== FAILURES ===================================
____________________________ test_negative_criteria ____________________________
sklearn_genetic/tests/test_feature_selection.py:208: in test_negative_criteria
    evolved_estimator.fit(X_train_b, y_train_b)
sklearn_genetic/genetic_search.py:1138: in fit
    self.scorer_ = check_scoring(self.estimator, self.scoring)
/usr/lib64/python3.13/site-packages/sklearn/utils/_param_validation.py:206: in wrapper
    validate_parameter_constraints(
/usr/lib64/python3.13/site-packages/sklearn/utils/_param_validation.py:98: in validate_parameter_constraints
    raise InvalidParameterError(
E   sklearn.utils._param_validation.InvalidParameterError: The 'scoring' parameter of check_scoring must be a str among {'adjusted_mutual_info_score', 'precision_weighted', 'jaccard_micro', 'f1_samples', 'explained_variance', 'f1_macro', 'neg_median_absolute_error', 'neg_root_mean_squared_error', 'roc_auc_ovo', 'f1_micro', 'rand_score', 'recall', 'jaccard_samples', 'precision', 'neg_mean_absolute_percentage_error', 'neg_negative_likelihood_ratio', 'neg_mean_gamma_deviance', 'recall_samples', 'r2', 'precision_micro', 'neg_mean_absolute_error', 'neg_log_loss', 'neg_mean_squared_error', 'positive_likelihood_ratio', 'recall_weighted', 'f1_weighted', 'normalized_mutual_info_score', 'roc_auc_ovr_weighted', 'precision_macro', 'jaccard_weighted', 'd2_absolute_error_score', 'neg_max_error', 'recall_macro', 'roc_auc_ovr', 'f1', 'top_k_accuracy', 'neg_brier_score', 'roc_auc', 'matthews_corrcoef', 'jaccard_macro', 'accuracy', 'average_precision', 'neg_mean_poisson_deviance', 'neg_mean_squared_log_error', 'neg_root_mean_squared_log_error', 'homogeneity_score', 'fowlkes_mallows_score', 'precision_samples', 'roc_auc_ovo_weighted', 'mutual_info_score', 'completeness_score', 'adjusted_rand_score', 'balanced_accuracy', 'v_measure_score', 'jaccard', 'recall_micro'}, a callable, an instance of 'list', an instance of 'set', an instance of 'tuple', an instance of 'dict' or None. Got 'max_error' instead.
____________________________ test_negative_criteria ____________________________
sklearn_genetic/tests/test_genetic_search.py:277: in test_negative_criteria
    evolved_estimator.fit(X_train_b, y_train_b)
sklearn_genetic/genetic_search.py:531: in fit
    self.scorer_ = check_scoring(self.estimator, self.scoring)
/usr/lib64/python3.13/site-packages/sklearn/utils/_param_validation.py:206: in wrapper
    validate_parameter_constraints(
/usr/lib64/python3.13/site-packages/sklearn/utils/_param_validation.py:98: in validate_parameter_constraints
    raise InvalidParameterError(
E   sklearn.utils._param_validation.InvalidParameterError: The 'scoring' parameter of check_scoring must be a str among {'adjusted_mutual_info_score', 'precision_weighted', 'jaccard_micro', 'f1_samples', 'explained_variance', 'f1_macro', 'neg_median_absolute_error', 'neg_root_mean_squared_error', 'roc_auc_ovo', 'f1_micro', 'rand_score', 'recall', 'jaccard_samples', 'precision', 'neg_mean_absolute_percentage_error', 'neg_negative_likelihood_ratio', 'neg_mean_gamma_deviance', 'recall_samples', 'r2', 'precision_micro', 'neg_mean_absolute_error', 'neg_log_loss', 'neg_mean_squared_error', 'positive_likelihood_ratio', 'recall_weighted', 'f1_weighted', 'normalized_mutual_info_score', 'roc_auc_ovr_weighted', 'precision_macro', 'jaccard_weighted', 'd2_absolute_error_score', 'neg_max_error', 'recall_macro', 'roc_auc_ovr', 'f1', 'top_k_accuracy', 'neg_brier_score', 'roc_auc', 'matthews_corrcoef', 'jaccard_macro', 'accuracy', 'average_precision', 'neg_mean_poisson_deviance', 'neg_mean_squared_log_error', 'neg_root_mean_squared_log_error', 'homogeneity_score', 'fowlkes_mallows_score', 'precision_samples', 'roc_auc_ovo_weighted', 'mutual_info_score', 'completeness_score', 'adjusted_rand_score', 'balanced_accuracy', 'v_measure_score', 'jaccard', 'recall_micro'}, a callable, an instance of 'list', an instance of 'set', an instance of 'tuple', an instance of 'dict' or None. Got 'max_error' instead.
=========================== short test summary info ============================
FAILED sklearn_genetic/tests/test_feature_selection.py::test_negative_criteria - sklearn.utils._param_validation.InvalidParameterError: The 'scoring' parameter of check_scoring must be a str among {'adjusted_mutual_info_score', 'precision_weighted', 'jaccard_micro', 'f1_samples', 'explained_variance', 'f1_macro', 'neg_median_absolute_error', 'neg_root_mean_squared_error', 'roc_auc_ovo', 'f1_micro', 'rand_score', 'recall', 'jaccard_samples', 'precision', 'neg_mean_absolute_percentage_error', 'neg_negative_likelihood_ratio', 'neg_mean_gamma_deviance', 'recall_samples', 'r2', 'precision_micro', 'neg_mean_absolute_error', 'neg_log_loss', 'neg_mean_squared_error', 'positive_likelihood_ratio', 'recall_weighted', 'f1_weighted', 'normalized_mutual_info_score', 'roc_auc_ovr_weighted', 'precision_macro', 'jaccard_weighted', 'd2_absolute_error_score', 'neg_max_error', 'recall_macro', 'roc_auc_ovr', 'f1', 'top_k_accuracy', 'neg_brier_score', 'roc_auc', 'matthews_corrcoef', 'jaccard_macro', 'accuracy', 'average_precision', 'neg_mean_poisson_deviance', 'neg_mean_squared_log_error', 'neg_root_mean_squared_log_error', 'homogeneity_score', 'fowlkes_mallows_score', 'precision_samples', 'roc_auc_ovo_weighted', 'mutual_info_score', 'completeness_score', 'adjusted_rand_score', 'balanced_accuracy', 'v_measure_score', 'jaccard', 'recall_micro'}, a callable, an instance of 'list', an instance of 'set', an instance of 'tuple', an instance of 'dict' or None. Got 'max_error' instead.
FAILED sklearn_genetic/tests/test_genetic_search.py::test_negative_criteria - sklearn.utils._param_validation.InvalidParameterError: The 'scoring' parameter of check_scoring must be a str among {'adjusted_mutual_info_score', 'precision_weighted', 'jaccard_micro', 'f1_samples', 'explained_variance', 'f1_macro', 'neg_median_absolute_error', 'neg_root_mean_squared_error', 'roc_auc_ovo', 'f1_micro', 'rand_score', 'recall', 'jaccard_samples', 'precision', 'neg_mean_absolute_percentage_error', 'neg_negative_likelihood_ratio', 'neg_mean_gamma_deviance', 'recall_samples', 'r2', 'precision_micro', 'neg_mean_absolute_error', 'neg_log_loss', 'neg_mean_squared_error', 'positive_likelihood_ratio', 'recall_weighted', 'f1_weighted', 'normalized_mutual_info_score', 'roc_auc_ovr_weighted', 'precision_macro', 'jaccard_weighted', 'd2_absolute_error_score', 'neg_max_error', 'recall_macro', 'roc_auc_ovr', 'f1', 'top_k_accuracy', 'neg_brier_score', 'roc_auc', 'matthews_corrcoef', 'jaccard_macro', 'accuracy', 'average_precision', 'neg_mean_poisson_deviance', 'neg_mean_squared_log_error', 'neg_root_mean_squared_log_error', 'homogeneity_score', 'fowlkes_mallows_score', 'precision_samples', 'roc_auc_ovo_weighted', 'mutual_info_score', 'completeness_score', 'adjusted_rand_score', 'balanced_accuracy', 'v_measure_score', 'jaccard', 'recall_micro'}, a callable, an instance of 'list', an instance of 'set', an instance of 'tuple', an instance of 'dict' or None. Got 'max_error' instead.
============ 2 failed, 110 passed, 6 deselected in 88.46s (0:01:28) ============

Fedora is in the process of updating NumPy. To make scikit-learn work with numpy 2.2.0 it was updated to version 1.6.0. With that update I'm seeing above test failures.

@penguinpee penguinpee added the bug Something isn't working label Dec 21, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant