-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrbm_cuda.py
247 lines (197 loc) · 7.4 KB
/
rbm_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#coding: utf-8
from __future__ import division
import time
import numpy as np
import cudamat as cm
import pyprind
class RestrictedBoltzmanMachine(object):
def __init__(self, n_hidden, learning_rate=0.1, momentum=0.9, n_epochs=30, batch_size=128, k=1, title=''):
self.n_hidden = n_hidden
self.learning_rate = learning_rate
self.momentum = momentum
self.n_epochs = n_epochs
self.batch_size = batch_size
self.k = k
self.title = title
def transform(self, v, h):
"""
Parameters:
v : the visible input activation
h : the target to write the hidden activation
"""
cm.dot(self.W.T, v, target = h)
h.add_col_vec(self.hidden_bias)
h.apply_sigmoid()
def sample_hidden(self, v, h_mean, h):
"""
Parameters:
v : the visible input activation
h_mean : the target to write the hidden activation
h: the target to write the hidden sample
"""
self.transform(v, h_mean)
h.fill_with_rand()
h.less_than(h_mean)
def sample_visible(self, h, v_mean, v):
"""
Parameters:
h : the hidden activation
v_mean : the target to write the visible activation
v: the target to write the visible sample
"""
self.reverse_transform(h, v_mean)
v.fill_with_rand()
v.less_than(v_mean)
def reverse_transform(self, h, v):
"""
Parameters:
h : the hidden activation
v : the target to write the visible activation
"""
cm.dot(self.W, h, target = v)
v.add_col_vec(self.visible_bias)
v.apply_sigmoid()
def fit(self, input, verbose=1):
"""
Parameters
----------
input : CUDAMatrix array, shape (n_components, n_samples) - opposite of scikit-learn
"""
n_samples = input.shape[1]
num_batches = n_samples // self.batch_size
# model parameters
self.n_visible = input.shape[0]
# initialize weights
self.W = cm.CUDAMatrix(0.1 * np.random.randn(self.n_visible, self.n_hidden))
self.visible_bias = cm.CUDAMatrix(np.zeros((self.n_visible, 1)))
self.hidden_bias = cm.CUDAMatrix(-4.*np.ones((self.n_hidden, 1)))
# initialize weight updates
u_W = cm.CUDAMatrix(np.zeros((self.n_visible , self.n_hidden )))
u_visible_bias = cm.CUDAMatrix(np.zeros((self.n_visible , 1)))
u_hidden_bias = cm.CUDAMatrix(np.zeros((self.n_hidden , 1)))
# initialize temporary storage
v = cm.empty((self.n_visible, self.batch_size))
h = cm.empty((self.n_hidden , self.batch_size))
r = cm.empty((self.n_hidden , self.batch_size))
if verbose == 1:
bar = pyprind.ProgBar(self.n_epochs, title=self.title)
for epoch in range(self.n_epochs):
start_time = time.time()
err = []
for batch in range(num_batches):
# get current minibatch
v_true = input.slice(batch*self.batch_size, (batch + 1)*self.batch_size)
v.assign(v_true)
# apply momentum
u_W.mult(self.momentum)
u_visible_bias.mult(self.momentum)
u_hidden_bias.mult(self.momentum)
# positive phase
self.transform(v, h)
u_W.add_dot(v, h.T)
u_visible_bias.add_sums(v, axis = 1)
u_hidden_bias.add_sums(h, axis = 1)
# sample hiddens
r.fill_with_rand()
r.less_than(h, target = h)
# negative phase CD-k
for n in xrange(self.k):
self.reverse_transform(h, v)
self.transform(v, h)
u_W.subtract_dot(v, h.T)
u_visible_bias.add_sums(v , axis = 1, mult = -1.)
u_hidden_bias.add_sums(h , axis = 1, mult = -1.)
# update weights
self.W.add_mult(u_W, self.learning_rate/self.batch_size)
self.visible_bias.add_mult(u_visible_bias , self.learning_rate/self.batch_size)
self.hidden_bias.add_mult(u_hidden_bias , self.learning_rate/self.batch_size)
# calculate reconstruction error
v.subtract(v_true)
err.append(v.euclid_norm()**2 / (self.n_visible * self.batch_size))
if verbose == 1:
bar.update()
elif verbose > 1:
print("Epoch: %i, MSE: %.6f, Time: %.6f s" % (epoch+1, np.mean(err), (time.time() - start_time)))
# frees memory
u_W.free_device_memory()
u_visible_bias.free_device_memory()
u_hidden_bias.free_device_memory()
v.free_device_memory()
h.free_device_memory()
r.free_device_memory()
class DeepBeliefNetwork(object):
def __init__(self, layers):
self.layers = layers
def fit(self, input):
"""
Train each layer of the network
Parameters
----------
input: A CUDAMatrix shaped as (n_features, n_samples)
"""
n_samples = input.shape[1]
for n, layer in enumerate(self.layers):
layer.fit(input)
if n+1 < len(self.layers):
h = cm.empty((layer.n_hidden, n_samples))
layer.transform(input, h)
if n > 0:
input.free_device_memory()
input = h
if len(self.layers) > 1:
input.free_device_memory()
def transform(self, input):
"""
Transform the input through each layer
Parameters
----------
input: A CUDAMatrix shaped as the first layer
Return
------
A newly allocated CUDAMatrix with the shape of the last layer.
"""
n_samples = input.shape[1]
for n, layer in enumerate(layers):
h = cm.empty((layer.n_hidden, n_samples))
layer.transform(input, h)
if n > 0:
input.free_device_memory()
input = h
return input
def reverse_transform(self, h):
"""
Reverse transform from last to first layer
Parameters
----------
h: A CUDAMatrix shaped as the last layer
Return
------
A new CUDAMatrix with the shape of the first layer
"""
for n, layer in enumerate(reversed(self.layers)):
v = cm.empty(layer.visible_bias.shape)
layer.reverse_transform(h, v)
if n > 0:
h.free_device_memory()
h = v
return v
def dream(self, k=10):
"""
Generate a pattern from this network.
Return
------
A new CUDAMatrix with the shape of the first layer
"""
last_layer = self.layers[-1]
v = cm.empty(last_layer.visible_bias.shape)
h = cm.empty(last_layer.hidden_bias.shape)
v_mean = cm.empty(last_layer.visible_bias.shape)
h_mean = cm.empty(last_layer.hidden_bias.shape)
h.fill_with_rand()
for _ in xrange(k):
last_layer.sample_visible(h, v_mean, v)
last_layer.sample_hidden(v, h_mean, h)
v.free_device_memory()
v_mean.free_device_memory()
h_mean.free_device_memory()
return self.reverse_transform(h)