-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathgenerate.py
executable file
·90 lines (73 loc) · 2.65 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import torch
from torchvision import utils
import cv2
from tqdm import tqdm
import numpy as np
from model import Generator
from config import GANConfig
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="Generate samples from the generator")
parser.add_argument(
"--n_img", type=int, default=16, help="number of images to be generated"
)
parser.add_argument(
"--n_row", type=int, default=4, help="number of samples per row"
)
parser.add_argument(
"--truncation", type=float, default=0.5, help="truncation ratio"
)
parser.add_argument(
"--truncation_mean",
type=int,
default=4096,
help="number of vectors to calculate mean for the truncation",
)
parser.add_argument("--n_frame", type=int, default=120)
parser.add_argument("--radius", type=float, default=30)
parser.add_argument(
"ckpt", metavar="CKPT", type=str, help="path to the model checkpoint"
)
args = parser.parse_args()
ckpt = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
conf = GANConfig(**ckpt["conf"])
generator = conf.generator.make().to(device)
generator.load_state_dict(ckpt["g_ema"], strict=False)
generator.eval()
mean_latent = generator.mean_latent(args.truncation_mean)
x = torch.randn(args.n_img, conf.generator["style_dim"], device=device)
theta = np.radians(np.linspace(0, 360, args.n_frame))
x_2 = np.cos(theta) * args.radius
y_2 = np.sin(theta) * args.radius
trans_x = x_2.tolist()
trans_y = y_2.tolist()
images = []
transform_p = generator.get_transform(
x, truncation=args.truncation, truncation_latent=mean_latent
)
with torch.no_grad():
for i, (t_x, t_y) in enumerate(tqdm(zip(trans_x, trans_y), total=args.n_frame)):
transform_p[:, 2] = t_y
transform_p[:, 3] = t_x
img = generator(
x,
truncation=args.truncation,
truncation_latent=mean_latent,
transform=transform_p,
)
images.append(
utils.make_grid(
img.cpu(), normalize=True, nrow=args.n_row, value_range=(-1, 1)
)
.mul(255)
.permute(1, 2, 0)
.numpy()
.astype(np.uint8)
)
videodims = (images[0].shape[1], images[0].shape[0])
fourcc = cv2.VideoWriter_fourcc(*"VP90")
video = cv2.VideoWriter("sample.webm", fourcc, 24, videodims)
for i in tqdm(images):
video.write(cv2.cvtColor(i, cv2.COLOR_RGB2BGR))
video.release()