-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpca.py
229 lines (205 loc) · 8.55 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 28 21:28:17 2019
@author: Ruchika
"""
from typing import List, Dict
from collections import Counter
import math
import matplotlib.pyplot as plt
from Vector_operations_on_data import vector_mean
from Vector_operations_on_data import Vector
import tqdm
"""
##############################################################################################################
########################## Loading the data ##########################
##############################################################################################################
"""
# Dimensionality reduction (PCA)
pca_data = [
[20.9666776351559,-13.1138080189357],
[22.7719907680008,-19.8890894944696],
[25.6687103160153,-11.9956004517219],
[18.0019794950564,-18.1989191165133],
[21.3967402102156,-10.8893126308196],
[0.443696899177716,-19.7221132386308],
[29.9198322142127,-14.0958668502427],
[19.0805843080126,-13.7888747608312],
[16.4685063521314,-11.2612927034291],
[21.4597664701884,-12.4740034586705],
[3.87655283720532,-17.575162461771],
[34.5713920556787,-10.705185165378],
[13.3732115747722,-16.7270274494424],
[20.7281704141919,-8.81165591556553],
[24.839851437942,-12.1240962157419],
[20.3019544741252,-12.8725060780898],
[21.9021426929599,-17.3225432396452],
[23.2285885715486,-12.2676568419045],
[28.5749111681851,-13.2616470619453],
[29.2957424128701,-14.6299928678996],
[15.2495527798625,-18.4649714274207],
[26.5567257400476,-9.19794350561966],
[30.1934232346361,-12.6272709845971],
[36.8267446011057,-7.25409849336718],
[32.157416823084,-10.4729534347553],
[5.85964365291694,-22.6573731626132],
[25.7426190674693,-14.8055803854566],
[16.237602636139,-16.5920595763719],
[14.7408608850568,-20.0537715298403],
[6.85907008242544,-18.3965586884781],
[26.5918329233128,-8.92664811750842],
[-11.2216019958228,-27.0519081982856],
[8.93593745011035,-20.8261235122575],
[24.4481258671796,-18.0324012215159],
[2.82048515404903,-22.4208457598703],
[30.8803004755948,-11.455358009593],
[15.4586738236098,-11.1242825084309],
[28.5332537090494,-14.7898744423126],
[40.4830293441052,-2.41946428697183],
[15.7563759125684,-13.5771266003795],
[19.3635588851727,-20.6224770470434],
[13.4212840786467,-19.0238227375766],
[7.77570680426702,-16.6385739839089],
[21.4865983854408,-15.290799330002],
[12.6392705930724,-23.6433305964301],
[12.4746151388128,-17.9720169566614],
[23.4572410437998,-14.602080545086],
[13.6878189833565,-18.9687408182414],
[15.4077465943441,-14.5352487124086],
[20.3356581548895,-10.0883159703702],
[20.7093833689359,-12.6939091236766],
[11.1032293684441,-14.1383848928755],
[17.5048321498308,-9.2338593361801],
[16.3303688220188,-15.1054735529158],
[26.6929062710726,-13.306030567991],
[34.4985678099711,-9.86199941278607],
[39.1374291499406,-10.5621430853401],
[21.9088956482146,-9.95198845621849],
[22.2367457578087,-17.2200123442707],
[10.0032784145577,-19.3557700653426],
[14.045833906665,-15.871937521131],
[15.5640911917607,-18.3396956121887],
[24.4771926581586,-14.8715313479137],
[26.533415556629,-14.693883922494],
[12.8722580202544,-21.2750596021509],
[24.4768291376862,-15.9592080959207],
[18.2230748567433,-14.6541444069985],
[4.1902148367447,-20.6144032528762],
[12.4332594022086,-16.6079789231489],
[20.5483758651873,-18.8512560786321],
[17.8180560451358,-12.5451990696752],
[11.0071081078049,-20.3938092335862],
[8.30560561422449,-22.9503944138682],
[33.9857852657284,-4.8371294974382],
[17.4376502239652,-14.5095976075022],
[29.0379635148943,-14.8461553663227],
[29.1344666599319,-7.70862921632672],
[32.9730697624544,-15.5839178785654],
[13.4211493998212,-20.150199857584],
[11.380538260355,-12.8619410359766],
[28.672631499186,-8.51866271785711],
[16.4296061111902,-23.3326051279759],
[25.7168371582585,-13.8899296143829],
[13.3185154732595,-17.8959160024249],
[3.60832478605376,-25.4023343597712],
[39.5445949652652,-11.466377647931],
[25.1693484426101,-12.2752652925707],
[25.2884257196471,-7.06710309184533],
[6.77665715793125,-22.3947299635571],
[20.1844223778907,-16.0427471125407],
[25.5506805272535,-9.33856532270204],
[25.1495682602477,-7.17350567090738],
[15.6978431006492,-17.5979197162642],
[37.42780451491,-10.843637288504],
[22.974620174842,-10.6171162611686],
[34.6327117468934,-9.26182440487384],
[34.7042513789061,-6.9630753351114],
[15.6563953929008,-17.2196961218915],
[25.2049825789225,-14.1592086208169]
]
plt.show()
plt.scatter(*zip(*pca_data))
"""
##############################################################################################################
########################## Mean centered data ##########################
##############################################################################################################
"""
from Vector_operations_on_data import subtract
def de_mean(data: List[Vector]) -> List[Vector]:
"""Recenters the data to have 0 mean in every dimension"""
mean = vector_mean(data)
return [subtract(vector, mean) for vector in data]
pca_data = de_mean(pca_data)
plt.show()
plt.scatter(*zip(*pca_data))
"""
##############################################################################################################
########################## Principal component analysis ##########################
##############################################################################################################
"""
from Vector_operations_on_data import magnitude, dot
def direction(w: Vector) -> Vector:
"""Computes a unit vector"""
mag = magnitude(w)
return [w_i / mag for w_i in w]
def directional_variance(data: List[Vector], w: Vector) -> float:
"""Returns the variance of each vector of data matrix
in the direction of vector w"""
w_dir = direction(w)
return [dot(v,w_dir) ** 2 for v in data]
def directional_variance_gradient(data: List[Vector], w: Vector) -> Vector:
"""The gradient of directional variance w.r.t w"""
w_dir = direction(w)
return [sum(2 * dot(v, w_dir) * v[i] for v in data)
for i in range(len(w))]
from gradient_descent import gradient_step;
# Use gradient ascent to find the direction that maximizes data varaince
# gradient ascent will used + step size
def first_principal_component(data: List[Vector],
n: int = 100,
step_size: float = 0.1) -> Vector:
# Start with a random direction
guess = [1.0 for _ in data[0]]
with tqdm.trange(n) as t:
for _ in t:
dv = directional_variance(data, guess)
gradient = directional_variance_gradient(data, guess)
guess = gradient_step(guess, gradient, step_size)
t.set_description(f"dv: {dv}")
return direction(guess)
# directional vector of the first principal component
pca1 = first_principal_component(pca_data)
plt.show()
ax = plt.axes()
ax.arrow(-1, -1.0, 8*pca1[0], 8*pca1[1],
head_width=0.5, head_length=0.7,
fc='lightblue', ec='black')
ax.scatter(*zip(*pca_data))
# First prinical component is the projection of v
from Vector_operations_on_data import scalar_multiply
def project(v: Vector, w: Vector) -> Vector:
"""Return the projection of v onto the direction w"""
projection_length = dot(v,w)
return scalar_multiply(projection_length, w)
# For finding other principal components, just remove the projection of
# previous components from the data matrix
def remove_projection_from_vector(v: Vector, w: Vector) -> Vector:
"""projects v onto w and subtracts the projection from v"""
return subtract(v,project(v,w))
def remove_projection(data: List[Vector], w: Vector) -> List[Vector]:
return [remove_projection_from_vector(v, w) for v in data]
pr_data = remove_projection(pca_data, pca1)
plt.show()
plt.scatter(*zip(*pr_data))
## Iteratively find multiple principal components from a high-dimensional dataset
def pca(data: List[Vector], num_components: int) -> List[Vector]:
components: List[Vector] = []
for _ in range(num_components):
component = first_principal_component(data)
components.append(component)
data = remove_projection(data, component)
return components
def transform_vector(v: Vector, components: List[Vector]) -> Vector:
return [dot(v,w) for w in components]
def transform(data: List[Vector], components: List[Vector]) -> List[Vector]:
return [transform_vector(v, components) for v in data]