-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.go
236 lines (198 loc) · 6.47 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
package main
import (
"image/color"
"math"
"math/rand"
"time"
"github.com/hajimehoshi/ebiten/v2"
"github.com/hajimehoshi/ebiten/v2/ebitenutil"
"github.com/rudransh61/Physix-go/dynamics/collision"
"github.com/rudransh61/Physix-go/pkg/rigidbody"
"github.com/rudransh61/Physix-go/pkg/vector"
"github.com/rudransh61/Physix-go/pkg/broadphase"
)
// PVEBody extends rigidbody.RigidBody with Heat field
type PVEBody struct {
*rigidbody.RigidBody
Heat float64 // Heat of the particle
Color color.RGBA
}
var (
balls []*PVEBody // Using PVEBody instead of rigidbody.RigidBody
dt = 0.1
ticker *time.Ticker
initialInterval = time.Second / 5 // Initial interval for adding particles
center vector.Vector // Center of the screen
limit = 10000
// Broad-phase spatial hash
spatialHash *broadphase.SpatialHash
)
const (
Mass = 1
Shape = "Circle"
Radius = 2 // Tiny particles
Friction = 0.899 // Friction coefficient
Gravity = 50 // Strength of gravity towards the center
InitRadius = 1000.0 // Initial radius of particle distribution
)
var (
particlesAdded = 0
maxParticles = 100000 // Maximum number of particles to add
)
func update() error {
// Add new particles until the maximum is reached
if particlesAdded < maxParticles {
select {
case <-ticker.C:
for i := 0; i < 14; i++ {
addParticle()
}
default:
}
}
// Clear spatial hash
spatialHash.Clear()
// Insert particles into the spatial hash
for _, ball := range balls {
spatialHash.Add(ball, ball.Position)
}
// Apply forces and update particles
for _, ball := range balls {
// Apply gravity towards the center
gravity := center.Sub(ball.Position).Normalize().Scale(Gravity)
ApplyForcePVE(ball, gravity, dt)
// Apply friction
ball.Velocity = ball.Velocity.Scale(Friction)
}
// Broad-phase collision detection and response
for i := 0; i < len(balls); i++ {
ball := balls[i]
// Query nearby objects using spatial hash
nearbyObjects := spatialHash.Query(ball.Position)
for _, obj := range nearbyObjects {
other, ok := obj.(*PVEBody)
if !ok || other == ball {
continue
}
// Check collision and resolve
if collision.CircleCollided(ball.RigidBody, other.RigidBody) {
resolveCollision(ball.RigidBody, other.RigidBody, balls)
}
}
}
return nil
}
func draw(screen *ebiten.Image) {
for _, ball := range balls {
// Determine the color based on heat
ebitenutil.DrawCircle(screen, ball.Position.X, ball.Position.Y, ball.Radius, ball.Color)
}
}
func main() {
ebiten.SetWindowSize(800, 800)
ebiten.SetWindowTitle("Star Simulation")
// Set the center of the screen
center = vector.Vector{X: 400, Y: 400}
ticker = time.NewTicker(initialInterval)
// Initialize spatial hash with appropriate cell size
cellSize := 2.0 * Radius // Adjust cell size based on particle size
screenWidth, screenHeight := ebiten.WindowSize()
spatialHash = broadphase.NewSpatialHash(cellSize, float64(screenWidth), float64(screenHeight))
// Initialize with a few particles
initializeBalls(10000)
if err := ebiten.RunGame(&Game{}); err != nil {
panic(err)
}
}
func initializeBalls(n int) {
balls = make([]*PVEBody, 0, n)
for i := 0; i < n; i++ {
// Generate particles in a circular pattern around the center
angle := 2 * math.Pi * float64(i) / float64(n)
radius := rand.Float64() * InitRadius
x := center.X + radius*math.Cos(angle)
y := center.Y + radius*math.Sin(angle)
colorValue := uint8(rand.Int())
colorValue1 := uint8(rand.Int())
colorValue2 := uint8(rand.Int())
ball := &PVEBody{
RigidBody: &rigidbody.RigidBody{
Position: vector.Vector{X: x, Y: y},
Velocity: vector.Vector{X: 0, Y: 0}, // No initial velocity
Mass: Mass,
Shape: Shape,
Radius: Radius,
IsMovable: true,
},
Color: color.RGBA{R: colorValue1, G: colorValue2, B: colorValue, A: 0xff},
Heat: 100.0, // Set initial heat value
}
balls = append(balls, ball)
}
}
func addParticle() {
// Add particles dynamically
screenWidth, screenHeight := ebiten.WindowSize()
x := rand.Float64() * float64(screenWidth)
y := rand.Float64() * float64(screenHeight)
colorValue := uint8(rand.Int())
colorValue1 := uint8(rand.Int())
colorValue2 := uint8(rand.Int())
ball := &PVEBody{
RigidBody: &rigidbody.RigidBody{
Position: vector.Vector{X: x, Y: y},
Velocity: vector.Vector{X: 0, Y: 0}, // No initial velocity
Mass: Mass,
Shape: Shape,
Radius: Radius,
IsMovable: true,
},
Color: color.RGBA{R: colorValue1, G: colorValue2, B: colorValue, A: 0xff},
Heat: 100.0, // Set initial heat value
}
balls = append(balls, ball)
particlesAdded++
}
type Game struct{}
func (g *Game) Update() error {
return update()
}
func (g *Game) Draw(screen *ebiten.Image) {
draw(screen)
}
func (g *Game) Layout(outsideWidth, outsideHeight int) (screenWidth, screenHeight int) {
return 800, 800
}
func ApplyForcePVE(body *PVEBody, force vector.Vector, dt float64) {
if body.IsMovable {
// Use Newton's second law: F = ma -> a = F/m
body.Force = force
acceleration := body.Force.Scale(1 / body.Mass)
// Update velocity using acceleration and time step
body.Velocity = body.Velocity.Add(acceleration.Scale(dt))
// Update position using velocity and time step
body.Position = body.Position.Add(body.Velocity.Scale(dt))
body.Heat = body.Velocity.Scale(0.5).Magnitude()
}
}
func resolveCollision(ball1, ball2 *rigidbody.RigidBody, balls []*PVEBody) {
distance := ball1.Position.Sub(ball2.Position)
distanceMagnitude := distance.Magnitude()
minimumDistance := ball1.Radius + ball2.Radius
if distanceMagnitude < minimumDistance {
moveDirection := distance.Normalize()
overlap := (minimumDistance - distanceMagnitude) * 5
// Calculate the repulsive force magnitude based on the overlap
mag := 10.0
repulsiveForceMagnitude := overlap * mag // Adjust this factor as needed for desired effect
repulsiveForce := moveDirection.Scale(repulsiveForceMagnitude)
// Apply the repulsive force to the velocities of the balls
ball1.Velocity = ball1.Velocity.Add(repulsiveForce.Scale(dt / ball1.Mass).Scale(0.9))
ball2.Velocity = ball2.Velocity.Add(repulsiveForce.Scale(-dt / ball2.Mass).Scale(0.9))
// Adjust positions slightly to avoid sticking
correctionFactor := 0.5 // Adjust this factor as needed for desired effect
positionCorrection := moveDirection.Scale(correctionFactor * overlap * 5)
ball1.Force = ball1.Force.Add(positionCorrection)
ball2.Force = ball2.Force.Sub(positionCorrection)
}
}