forked from jfzhang95/PoseAug
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_baseline.py
102 lines (80 loc) · 3.56 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import print_function, absolute_import, division
import datetime
import os
import os.path as path
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from function_baseline.config import get_parse_args
from function_baseline.data_preparation import data_preparation
from function_baseline.model_pos_preparation import model_pos_preparation
from function_baseline.model_pos_train import train
from function_poseaug.model_pos_eval import evaluate
from utils.log import Logger, savefig
from utils.utils import save_ckpt
"""
this code is used to pretrain the baseline model
1. Simple Baseline
2. VideoPose
3. SemGCN
4. ST-GCN
code are modified from https://github.com/garyzhao/SemGCN
"""
def main(args):
print('==> Using settings {}'.format(args))
device = torch.device("cuda")
print('==> Loading dataset...')
data_dict = data_preparation(args)
print("==> Creating PoseNet model...")
model_pos = model_pos_preparation(args, data_dict['dataset'], device)
print("==> Prepare optimizer...")
criterion = nn.MSELoss(reduction='mean').to(device)
optimizer = torch.optim.Adam(model_pos.parameters(), lr=args.lr)
ckpt_dir_path = path.join(args.checkpoint, args.posenet_name, args.keypoints,
datetime.datetime.now().strftime('%m%d%H%M%S') + '_' + args.note)
os.makedirs(ckpt_dir_path, exist_ok=True)
print('==> Making checkpoint dir: {}'.format(ckpt_dir_path))
logger = Logger(os.path.join(ckpt_dir_path, 'log.txt'), args)
logger.set_names(['epoch', 'lr', 'loss_train', 'error_h36m_p1', 'error_h36m_p2', 'error_3dhp_p1', 'error_3dhp_p2'])
#################################################
# ########## start training here
#################################################
start_epoch = 0
error_best = None
glob_step = 0
lr_now = args.lr
for epoch in range(start_epoch, args.epochs):
print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr_now))
# Train for one epoch
epoch_loss, lr_now, glob_step = train(data_dict['train_loader'], model_pos, criterion, optimizer, device, args.lr, lr_now,
glob_step, args.lr_decay, args.lr_gamma, max_norm=args.max_norm)
# Evaluate
error_h36m_p1, error_h36m_p2 = evaluate(data_dict['H36M_test'], model_pos, device)
error_3dhp_p1, error_3dhp_p2 = evaluate(data_dict['3DHP_test'], model_pos, device, flipaug='_flip')
# Update log file
logger.append([epoch + 1, lr_now, epoch_loss, error_h36m_p1, error_h36m_p2, error_3dhp_p1, error_3dhp_p2])
# Update checkpoint
if error_best is None or error_best > error_h36m_p1:
error_best = error_h36m_p1
save_ckpt({'state_dict': model_pos.state_dict(), 'epoch': epoch + 1}, ckpt_dir_path, suffix='best')
if (epoch + 1) % args.snapshot == 0:
save_ckpt({'state_dict': model_pos.state_dict(), 'epoch': epoch + 1}, ckpt_dir_path)
logger.close()
logger.plot(['loss_train', 'error_h36m_p1'])
savefig(path.join(ckpt_dir_path, 'log.eps'))
return
if __name__ == '__main__':
args = get_parse_args()
# fix random
random_seed = args.random_seed
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
os.environ['PYTHONHASHSEED'] = str(random_seed)
# copy from #https://pytorch.org/docs/stable/notes/randomness.html
torch.backends.cudnn.deterministic = True
cudnn.benchmark = True
main(args)