-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
55 lines (49 loc) · 2.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import os
#import scipy.misc
import numpy as np
from model import DnCNN
import tensorflow as tf
parser = argparse.ArgumentParser(description='')
parser.add_argument('--trainset', dest='trainset', default='BSD400', help='name of the training dataset')
parser.add_argument('--testset', dest='testset', default='Set12', help='name of the training dataset')
parser.add_argument('--epoch', dest='epoch', type=int, default=50, help='# of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=128, help='# images in batch')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=40, help='patch size/input size')
parser.add_argument('--input_c', dest='input_c', type=int, default=1, help='# of input image channels')
parser.add_argument('--output_c', dest='output_c', type=int, default=1, help='# of output image channels')
parser.add_argument('--lr', dest='lr', type=float, default=0.01, help='initial learning rate for adam')
parser.add_argument('--beta1', dest='beta1', type=float, default=0.9, help='momentum term of adam')
parser.add_argument('--beta2', dest='beta2', type=float, default=0.999, help='momentum term of adam')
parser.add_argument('--checkpoint_dir', dest='ckpt_dir', default='./checkpoint', help='models are saved here')
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='sample are saved here')
parser.add_argument('--test_dir', dest='test_dir', default='./test', help='test sample are saved here')
parser.add_argument('--use_gpu', dest='use_gpu', type=bool, default=True, help='gpu flag')
parser.add_argument('--sigma', dest='sigma', type=int, default=25, help='noise level')
parser.add_argument('--phase', dest='phase', default='train', help='train or test')
args = parser.parse_args()
def main(_):
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
if not os.path.exists(args.sample_dir):
os.makedirs(args.sample_dir)
if not os.path.exists(args.test_dir):
os.makedirs(args.test_dir)
if args.use_gpu:
# added to controll the gpu memory
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
model = DnCNN(sess, sigma=args.sigma, lr=args.lr, dataset=args.trainset)
if args.phase == 'train':
model.train()
else:
model.test()
else:
with tf.Session() as sess:
model = DnCNN(sess, sigma=args.sigma, lr=args.lr, dataset=args.trainset)
if args.phase == 'train':
model.train()
else:
model.test()
if __name__ == '__main__':
tf.app.run()