-
Notifications
You must be signed in to change notification settings - Fork 96
/
030.py
58 lines (45 loc) · 1.59 KB
/
030.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Problem:
You are given an array of non-negative integers that represents a two-dimensional
elevation map where each element is unit-width wall and the integer is the height.
Suppose it will rain and all spots between two walls get filled up.
Compute how many units of water remain trapped on the map in O(N) time and O(1) space.
For example, given the input [2, 1, 2], we can hold 1 unit of water in the middle.
Given the input [3, 0, 1, 3, 0, 5], we can hold 3 units in the first index, 2 in the
second, and 3 in the fourth index (we cannot hold 5 since it would run off to the
left), so we can trap 8 units of water.
"""
from typing import List
def water(arr: List[int]) -> int:
length = len(arr)
# check if there is enough walls to store water
if length < 3:
return 0
left, right = 0, length - 1
left_max, right_max = 0, 0
total_water = 0
# calculating the amount of water that can be stored (using 2 pointers method)
while left <= right:
if arr[left] < arr[right]:
if arr[left] > left_max:
left_max = arr[left]
else:
total_water += left_max - arr[left]
left += 1
else:
if arr[right] > right_max:
right_max = arr[right]
else:
total_water += right_max - arr[right]
right -= 1
return total_water
if __name__ == "__main__":
print(water([2, 1, 2]))
print(water([3, 0, 1, 3, 0, 5]))
print(water([5, 3, 5, 3, 4]))
print(water([5, 1, 1, 1, 0]))
"""
SPECS:
TIME COMPLEXITY: O(n)
SPACE COMPLEXITY: O(1)
"""