-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy path072.py
121 lines (92 loc) · 3.47 KB
/
072.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Problem:
In a directed graph, each node is assigned an uppercase letter. We define a path's
value as the number of most frequently-occurring letter along that path. For example,
if a path in the graph goes through "ABACA", the value of the path is 3, since there
are 3 occurrences of 'A' on the path.
Given a graph with n nodes and m directed edges, return the largest value path of the
graph. If the largest value is infinite, then return null.
The graph is represented with a string and an edge list. The i-th character represents
the uppercase letter of the i-th node. Each tuple in the edge list (i, j) means there
is a directed edge from the i-th node to the j-th node. Self-edges are possible, as
well as multi-edges.
For example, the following input graph:
ABACA
[(0, 1),
(0, 2),
(2, 3),
(3, 4)]
Would have maximum value 3 using the path of vertices [0, 2, 3, 4], (A, A, C, A).
The following input graph:
A
[(0, 0)]
Should return null, since we have an infinite loop.
"""
# Solution copied from:
# https://github.com/vineetjohn/daily-coding-problem/blob/master/solutions/problem_072.py
from typing import Dict, List, Optional, Set, Tuple
class GraphPath:
def __init__(
self, nodes: Set[str] = set(), letter_counts: Dict[str, int] = dict()
) -> None:
self.nodes = nodes
self.letter_counts = letter_counts
def __repr__(self) -> str:
return "nodes={}, letters={}".format(self.nodes, self.letter_counts)
def get_max_value_string_helper(
graph_path: GraphPath, node: str, adjacency_map: Dict[str, Set[str]]
) -> List[GraphPath]:
if node in graph_path.nodes:
return [graph_path]
new_nodes = graph_path.nodes.copy()
new_nodes.add(node)
new_letter_counts = graph_path.letter_counts.copy()
if node[0] not in new_letter_counts:
new_letter_counts[node[0]] = 0
new_letter_counts[node[0]] += 1
new_graph_path = GraphPath(new_nodes, new_letter_counts)
if node not in adjacency_map:
return [new_graph_path]
paths = list()
for child_node in adjacency_map[node]:
new_paths = get_max_value_string_helper(
new_graph_path, child_node, adjacency_map
)
paths.extend(new_paths)
return paths
def get_max_value_string(
graph_string: str, edge_list: List[Tuple[int, int]]
) -> Optional[int]:
letter_counts = dict()
nodes = list()
for char in graph_string:
if char not in letter_counts:
letter_counts[char] = 0
else:
letter_counts[char] += 1
nodes.append("{}{}".format(char, letter_counts[char]))
adjacency_map = dict()
for start, end in edge_list:
if nodes[start] not in adjacency_map:
adjacency_map[nodes[start]] = set()
if nodes[start] != nodes[end]:
adjacency_map[nodes[start]].add(nodes[end])
paths = list()
graph_path = GraphPath()
for node in adjacency_map:
new_paths = get_max_value_string_helper(graph_path, node, adjacency_map)
paths.extend(new_paths)
max_value = 0
for path in paths:
max_path_value = max(path.letter_counts.values())
if max_path_value > max_value:
max_value = max_path_value
return max_value if max_value > 0 else None
if __name__ == "__main__":
print(get_max_value_string("ABACA", [(0, 1), (0, 2), (2, 3), (3, 4)]))
print(get_max_value_string("A", [(0, 0)]))
"""
SPECS:
TIME COMPLEXITY: O((len(graph_string) + edges) ^ 2)
SPACE COMPLEXITY: O(len(graph_string) + edges)
"""