-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy path122.py
50 lines (38 loc) · 1.05 KB
/
122.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
Problem:
You are given a 2-d matrix where each cell represents number of coins in that cell.
Assuming we start at matrix[0][0], and can only move right or down, find the maximum
number of coins you can collect by the bottom right corner.
For example, in this matrix
0 3 1 1
2 0 0 4
1 5 3 1
The most we can collect is 0 + 2 + 1 + 5 + 3 + 1 = 12 coins.
"""
from typing import List
def get_max_coins(matrix: List[List[int]]) -> int:
n = len(matrix)
m = len(matrix[0])
# generating the maximum number of coins using dynamic programming
for i in range(1, n):
for j in range(1, m):
matrix[i][j] += max(matrix[i - 1][j], matrix[i][j - 1])
return matrix[n - 1][m - 1]
if __name__ == "__main__":
matrix = [
[0, 3, 1, 1],
[2, 0, 0, 4],
[1, 5, 3, 1]
]
print(get_max_coins(matrix))
matrix = [
[0, 3, 1, 1],
[2, 8, 9, 4],
[1, 5, 3, 1]
]
print(get_max_coins(matrix))
"""
SPECS:
TIME COMPLEXITY: O(n x m)
SPACE COMPLEXITY: O(1) [modifying the matrix in place]
"""