-
Notifications
You must be signed in to change notification settings - Fork 96
/
336.py
81 lines (62 loc) · 1.8 KB
/
336.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""
Problem:
Write a program to determine how many distinct ways there are to create a max heap from
a list of N given integers.
For example, if N = 3, and our integers are [1, 2, 3], there are two ways, shown below.
3 3
/ \ / \
1 2 2 1
"""
from math import log2
from typing import List
def choose(n: int, k: int, nCk: List[List[int]]) -> int:
# get nCk using dynamic programming
if k > n:
return 0
if n <= 1:
return 1
if k == 0:
return 1
if nCk[n][k] != -1:
return nCk[n][k]
answer = choose(n - 1, k - 1, nCk) + choose(n - 1, k, nCk)
nCk[n][k] = answer
return answer
def get_nodes_left(n: int) -> int:
if n == 1:
return 0
h = int(log2(n))
# max number of elements that can be present in the hth level of any heap
num_h = 1 << h # (2 ^ h)
# number of elements that are actually present in the last level
# [hth level (2 ^ h - 1)]
last = n - ((1 << h) - 1)
if last >= (num_h // 2):
# if more than half of the last level is filled
return (1 << h) - 1
return (1 << h) - 1 - ((num_h // 2) - last)
def number_of_heaps(n: int, dp: List[int], nCk: List[List[int]]) -> int:
if n <= 1:
return 1
if dp[n] != -1:
return dp[n]
left = get_nodes_left(n)
ans = (
choose(n - 1, left, nCk)
* number_of_heaps(left, dp, nCk)
* number_of_heaps(n - 1 - left, dp, nCk)
)
dp[n] = ans
return ans
def get_number_of_heaps(n: int) -> int:
dp = [-1 for _ in range(n + 1)]
nCk = [[-1 for _ in range(n + 1)] for _ in range(n + 1)]
return number_of_heaps(n, dp, nCk)
if __name__ == "__main__":
print(get_number_of_heaps(3))
print(get_number_of_heaps(10))
"""
SPECS:
TIME COMPLEXITY: O(2 ^ n)
SPACE COMPLEXITY: O(n ^ 2)
"""