-
Notifications
You must be signed in to change notification settings - Fork 96
/
341.py
133 lines (110 loc) · 3.78 KB
/
341.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Problem:
You are given an N by N matrix of random letters and a dictionary of words. Find the
maximum number of words that can be packed on the board from the given dictionary.
A word is considered to be able to be packed on the board if:
It can be found in the dictionary
It can be constructed from untaken letters by other words found so far on the board
The letters are adjacent to each other (vertically and horizontally, not diagonally).
Each tile can be visited only once by any word.
For example, given the following dictionary:
{ 'eat', 'rain', 'in', 'rat' }
and matrix:
[['e', 'a', 'n'],
['t', 't', 'i'],
['a', 'r', 'a']]
Your function should return 3, since we can make the words 'eat', 'in', and 'rat'
without them touching each other. We could have alternatively made 'eat' and 'rain',
but that would be incorrect since that's only 2 words.
"""
from typing import List, Optional, Set, Tuple, Union
def get_neighbours(
pos: Tuple[int, int], dim: Tuple[int, int], seen: Set[int]
) -> List[Tuple[int, int]]:
n, m = dim
i, j = pos
positions = [
(i - 1, j),
(i + 1, j),
(i, j - 1),
(i, j + 1),
]
valid_positions = []
for position in positions:
y, x = position
if (0 <= y < n and 0 <= x < m) and (position not in seen):
valid_positions.append(position)
return valid_positions
def can_generate_word(
matrix: List[List[str]],
pos: Tuple[int, int],
word: str,
seen: Set[int],
dim: Tuple[int, int],
) -> Union[bool, Optional[Set[int]]]:
# check if the current word can be generated from the matrix
if word == "":
return True, seen
neighbours = get_neighbours(pos, dim, seen)
for neighbour in neighbours:
i, j = neighbour
if matrix[i][j] == word[0]:
generated, seen_pos = can_generate_word(
matrix, neighbour, word[1:], seen | set([neighbour]), dim
)
if generated:
return generated, seen_pos
return False, None
def get_power_set(words: List[str]) -> List[List[str]]:
# generate the power set of the given list except the empty set
num_of_words = len(words)
accumulator = []
pow_set_size = pow(2, num_of_words)
for counter in range(pow_set_size):
temp = []
for j in range(num_of_words):
if (counter & (1 << j)) > 0:
temp.append(words[j])
if temp:
# adding only valid sets
accumulator.append(temp)
return accumulator
def get_max_packed_helper(matrix: List[List[str]], words: Set[str]) -> int:
n, m = len(matrix), len(matrix[0])
count = 0
seen = set()
for i in range(n):
for j in range(m):
char = matrix[i][j]
for word in words:
if word[0] == char:
# a match has been found, trying to generate the entire word from
# the first character in the matrix
generated, seen_temp = can_generate_word(
matrix, (i, j), word[1:], seen, (n, m)
)
if generated:
count += 1
seen = seen_temp
return count
def get_max_packed(matrix: List[List[str]], words: Set[str]) -> int:
words_list = get_power_set(list(words))
max_words = 0
for word_list in words_list:
max_words = max(max_words, get_max_packed_helper(matrix, word_list))
return max_words
if __name__ == "__main__":
print(
get_max_packed(
[
["e", "a", "n"],
["t", "t", "i"],
["a", "r", "a"]
], {"eat", "rain", "in", "rat"},
)
)
"""
SPECS:
TIME COMPLEXITY: O(n x m x words x len(longest word))
SPACE COMPLEXITY: O(n x m)
"""