-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage.py
234 lines (210 loc) · 7.48 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
from io import BytesIO
import math
import random as rd
import time as tm
from PIL import Image as im, ImageDraw as idraw
class Image():
"The class the bot uses to process the images..."
def __init__(self):
self.background = (210,210,192)
self.w, self.h = self.get_image_size()
self.c = (self.w/2, self.h/2)
self.lw = 3
self.scale = rd.randint(8,12)
self.angles = self.get_angles(rd.randint(3,12))
self.sizes = self.get_escape_sizes(len(self.angles))
self.mask_path = "assets/img/masks/"
self.input_mask_list = [f for f in os.listdir(self.mask_path) if not f.startswith(".")]
#Update method to change random variables configuration
def update(self):
self.w, self.h = self.get_image_size()
self.c = (self.w/2, self.h/2)
self.scale = rd.randint(8,12)
self.angles = self.get_angles(rd.randint(3,12))
self.sizes = self.get_escape_sizes(len(self.angles))
#Drawing an escape art piece...
def draw_escape(self):
i = im.new("RGB",(self.w, self.h),self.background)
margin = self.w / 10
d = idraw.Draw(i)
c = self.get_time_color()
for r in range(144):
p = self.get_escape_start_point()
c = self.move_color(c,3)
while self.is_point_in(p, margin):
np = self.get_dice_point(p)
self.draw_line(d,c,self.lw,p,np)
p = np
return self.create_image(i)
#Drawing an artistic clock...
def draw_clock(self):
i = im.new("RGB",(self.w, self.h),self.background)
cs = (self.w/10, self.h/10)
d = idraw.Draw(i)
t = tm.localtime()
s = (math.pi * 2 * t.tm_sec / 60) - math.pi / 2
m = (math.pi * 2 * t.tm_min / 60) - math.pi / 2
h = (math.pi * 2 * (t.tm_hour%12) / 12) - math.pi / 2
p1 = (self.c[0] + math.cos(h) * cs[0] * 2, self.c[1] + math.sin(h) * cs[1] * 2)
p2 = (self.c[0] + math.cos(m) * cs[0] * 3, self.c[1] + math.sin(m) * cs[1] * 3)
p3 = (self.c[0] + math.cos(s) * cs[0] * 4, self.c[1] + math.sin(s) * cs[1] * 4)
op1 = (self.c[0] + math.cos(h) * cs[0] * 2, self.c[1] - math.sin(h) * cs[1] * 2)
op2 = (self.c[0] - math.cos(m) * cs[0] * 3, self.c[1] + math.sin(m) * cs[1] * 3)
op3 = (self.c[0] - math.cos(s) * cs[0] * 4, self.c[1] - math.sin(s) * cs[1] * 4)
color = self.get_time_color()
d.polygon([op1,op2,op3], fill=color, outline=None)
self.draw_circle(d, self.move_color((170,30,30),5), p1, cs[0]*1.66)
self.draw_circle(d, self.move_color((75,150,75),5), p2, cs[0]*1.33)
self.draw_circle(d, self.move_color((35,70,180),5), p3, cs[0])
return self.create_image(i)
#Drawing lines joining two random walks...
def draw_lines(self):
i = im.new("RGB",(self.w, self.h),self.background)
d = idraw.Draw(i)
c = self.get_time_color()
p1 = (self.w/2,self.h/5)
p2 = (self.w/2,self.h/5*4)
margin = self.w / 10
for r in range(2584):
np1 = self.get_random_motion(p1)
np2 = self.get_random_motion(p2)
if self.is_point_in(np1, margin) and self.is_point_in(np2, margin):
self.draw_line(d,c,1,np1,np2)
p1 = np1
p2 = np2
c = self.move_color(c,1)
return self.create_image(i)
#Drawing a beautiful rando histogram...
def draw_distribution(self):
i = im.new("RGB",(self.w, self.h),self.background)
d = idraw.Draw(i)
c = self.get_time_color()
margin = self.w / 50
steps = 21
data = self.get_distribution(steps)
data_max = max(data) * 1.5
m = (self.w-margin) / steps / 3
w = m * 2
color = self.get_time_color()
for b in range(steps):
a = (m + m * b + w * b, m)
b = (a[0] + w, (self.h * data[b] / data_max) + m)
self.draw_rectangle(d, self.invert_color(color), a, b)
a = (a[0], b[1] + m)
b = (b[0], self.h - m)
self.draw_rectangle(d, color, a, b)
color = self.move_color(color, 5)
return self.create_image(i)
#Creating a random data list to draw a distribution...
def get_distribution(self, steps):
data = [1 for i in range(steps)]
type = rd.choice([0,1,2])
for v in range(100):
if type == 0:
data[rd.randint(0,len(data)-1)] += 1
elif type == 1:
r = (rd.randint(0,len(data)-1) + rd.randint(0,len(data)-1)) // 2
data[r] += 1
else:
a = rd.randint(0,len(data)-1)
b = rd.randint(0,len(data)-1)
r = 0
if a < b:
r = a
else:
r = b
data[r] += 1
return data
#Function to move a point randomly...
def get_random_motion(self, last_point):
x = rd.randint(-30,30)
y = rd.randint(-30,30)
return (last_point[0] + x, last_point[1] + y)
#Function to move a point for a escape drawing...
def get_dice_point(self, last_point):
c = len(self.angles)
r = rd.randint(0,c-1)
x = math.cos(self.angles[r]) * self.sizes[r] * self.scale
y = math.sin(self.angles[r]) * self.sizes[r] * self.scale
return (last_point[0] + x, last_point[1] + y)
#Checking if a point is in the canvas...
def is_point_in(self, point, margin):
is_in = True
if (point[0] < margin or point[0] > self.w - margin
or point[1] < margin or point[1] > self.h - margin):
is_in = False
return is_in
#Function to draw a line...
def draw_line(self, draw, c, w, a, b):
draw.line([a,b], fill=c, width=w)
#Function to draw a circle...
def draw_circle(self, draw, color, c, d):
a = (c[0] - d/2, c[1] - d/2)
b = (c[0] + d/2, c[1] + d/2)
draw.ellipse([a,b], fill=color, outline=None)
#Function to draw a rectangle...
def draw_rectangle(self, draw, color, a, b):
draw.rectangle([a,b], fill=color, outline=None)
#Getting a random color based on time...
def get_time_color(self):
t = tm.localtime()
r = t.tm_sec * 2
g = t.tm_min * 2
b = t.tm_hour * 5
return (r,g,b)
#Moving a color randomly in rgb color space...
def move_color(self, color, motion):
r = rd.randint(-motion,motion)
g = rd.randint(-motion,motion)
b = rd.randint(-motion,motion)
return ((color[0]+r)%255,(color[1]+g)%255,(color[2]+b)%255)
#A function to invert a color...
def invert_color(self, color):
return (255-color[0], 255-color[1], 255-color[2])
#A function to chose a default image size to work with...
def get_image_size(self):
size = rd.choice([(1080,1920),(1080,1080),(1920,1080),(1920,1440),(1440,1920)])
return size[0], size[1]
#A function to obtain a list of angles in radian for the escape drawing algorithm...
def get_angles(self, count):
ang = []
v = 2 * math.pi / count
for a in range(count):
ang.append(a * v)
return ang
#A function to obtain a list of relative sizes for the escape drawing algorithm...
def get_escape_sizes(self, count):
aux = [rd.randint(1,4) for r in range(count)]
aux.sort()
offset = rd.randint(0,count)
sizes = []
for i in range(len(aux)):
sizes.append(aux[(i+offset)%count])
return sizes
#Adding some noise to the start point...
def get_escape_start_point(self):
x = self.w/5 + rd.random() * self.w/5 * 3
y = self.h/5 + rd.random() * self.h/5 * 3
return (x,y)
#A function to get an image combining two images...
def mean_image(self, back_image, top_image):
back_image.convert("RGBA")
top_image.convert("RGBA").resize(back_image.size)
mask = im.new("L", back_image.size, 127)
new = im.composite(back_image, top_image, mask)
return self.create_image(i)
#A function to paint a mask with an input image...
def mask_merge(self, background, top_image):
top_image.convert("RGBA")
mask = im.open(self.mask_path + rd.choice(self.input_mask_list)).convert("L").resize(top_image.size)
back_image = im.new("RGBA", top_image.size, background)
new = im.composite(back_image, top_image, mask)
return self.create_image(i)
#The function to store the Image object in a byte stream...
def create_image(self, image):
file = BytesIO()
image.save(file, "jpeg", quality=85, optimize=True)
file.name = "random_creation.jpg"
file.seek(0)
return file