forked from jameswdelancey/llama3.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrung.cu
187 lines (153 loc) · 6.08 KB
/
rung.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#define FLT_MIN 1.175494e-38
#include <cuda_bf16.h>
// The compiler does not properly optimize this unless we use the CPP to make
// the constant explicit.
#define warpSize 32
extern "C" __global__ void fp32_to_bf16(const float* input, __nv_bfloat16* output, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < size) {
output[i] = __float2bfloat16_rz(input[i]);
}
}
extern "C" __global__ void batched_softmax(float *data, int size, int batch_size) {
extern __shared__ float shared[];
unsigned int tid = threadIdx.x;
unsigned int warpId = threadIdx.x / warpSize;
unsigned int laneId = threadIdx.x % warpSize;
int batch_id = blockIdx.x; // Simplified batch ID, assumes one block per batch
if (batch_id >= batch_size) return;
float* x = data + batch_id * size;
// ----- 1. Partial Max Value Calculation -----
float partial_max = FLT_MIN; // Initialize to minimum float
for (int i = tid; i < size; i += blockDim.x) {
partial_max = fmaxf(x[i], partial_max);
}
// ----- 2. Warp Reduction for Max -----
float warpMax = partial_max;
for (int offset = warpSize / 2; offset > 0; offset >>= 1) {
float otherValue = __shfl_down_sync(0xFFFFFFFF, warpMax, offset);
warpMax = fmaxf(warpMax, otherValue);
}
// ----- 3. Warp Leader Writes to Shared Memory -----
if (laneId == 0) {
shared[warpId] = warpMax;
}
__syncthreads();
// ----- 4. Block Reduction for Max -----
float blockMax = shared[laneId];
for (int offset = warpSize / 2; offset > 0; offset >>= 1) {
float otherValue = __shfl_down_sync(0xFFFFFFFF, blockMax, offset);
blockMax = fmaxf(blockMax, otherValue);
}
// ----- 5. Broadcast the block max -----
float maxVal = __shfl_sync(0xFFFFFFFF, blockMax, 0);
// ----- 6. Calculate Partial Exp and Sum -----
float partial_sum = 0.0f;
for (int i = tid; i < size; i += blockDim.x) {
x[i] = __expf(x[i] - maxVal);
partial_sum += x[i];
}
// ----- 7. Warp Reduction for Sum -----
float warpSum = partial_sum;
for (int offset = warpSize / 2; offset > 0; offset >>= 1) {
float otherValue = __shfl_down_sync(0xFFFFFFFF, warpSum, offset);
warpSum += otherValue;
}
// ----- 8. Warp Leader Writes Sum to Shared Memory -----
if (laneId == 0) {
shared[warpId] = warpSum;
}
__syncthreads();
// ----- 9. Block Reduction for Sum -----
float blockSum = shared[laneId];
for (int offset = warpSize / 2; offset > 0; offset >>= 1) {
float otherValue = __shfl_down_sync(0xFFFFFFFF, blockSum, offset);
blockSum += otherValue;
}
// ----- 10. Broadcast the block Sum -----
float sum = __shfl_sync(0xFFFFFFFF, blockSum, 0);
// ----- 11. Normalize each element -----
float rsum = 1.0f / sum;
for (int i = tid; i < size; i += blockDim.x) {
x[i] *= rsum;
}
}
extern "C" __global__ void swiGLU(float* hb, float* hb2, int hidden_dim) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < hidden_dim) {
float val = hb[i];
// silu(x) = x * sigmoid(x)
val *= 1.0f / (1.0f + __expf(-val)); //More efficient sigmoid calculation
val *= hb2[i];
hb[i] = val;
}
}
extern "C" __global__ void rope_rotary_encoding(
float* __restrict__ q, // Query matrix
float* __restrict__ k, // Key matrix
const int n_heads, // Number of attention heads
const int n_kv_heads, // Number of key-value heads
const int head_size, // Size of each head (assumed to be even)
const int pos) // Position index
{
// Each thread computes a specific (head, j) pair
int head = blockIdx.x; // Head index (i)
int j = threadIdx.x * 2; // Position within head (stride of 2 for complex pairs)
if (head >= n_heads || j >= head_size)
return;
// Compute the frequency for this position
float freq = __powf(500000.0f, (float)-j / (float)head_size);
float val = pos * freq;
float fcr = __cosf(val);
float fci = __sinf(val);
// Load q values (q0 and q1)
float q0 = q[head * head_size + j];
float q1 = q[head * head_size + j + 1];
// Rotate q values
q[head * head_size + j] = q0 * fcr - q1 * fci;
q[head * head_size + j + 1] = q0 * fci + q1 * fcr;
// Rotate k values only if within n_kv_heads
if (head < n_kv_heads) {
float k0 = k[head * head_size + j];
float k1 = k[head * head_size + j + 1];
k[head * head_size + j] = k0 * fcr - k1 * fci;
k[head * head_size + j + 1] = k0 * fci + k1 * fcr;
}
}
extern "C" __global__ void rmsnorm(float *o, float *x, float *weight, int size) {
unsigned int tid = threadIdx.x;
unsigned int warpId = threadIdx.x / warpSize;
unsigned int laneId = threadIdx.x % warpSize;
// ----- 1. Calculate partial sum of squares -----
float partial_ss = 0.0f;
for (int j = tid; j < size; j += blockDim.x) {
partial_ss += x[j] * x[j];
}
// ----- 2. Warp Reduction (using shuffles) -----
float warpSum = partial_ss;
for (int offset = warpSize / 2; offset > 0; offset >>= 1) {
float otherValue = __shfl_down_sync(0xFFFFFFFF, warpSum, offset);
warpSum += otherValue;
}
// ----- 3. Warp Leader Writes to Shared Memory -----
extern __shared__ float shared[];
if (laneId == 0) {
shared[warpId] = warpSum;
}
__syncthreads();
// ----- 4. Block Reduction (using shuffles) -----
float blockSum = shared[laneId];
for (int offset = warpSize / 2; offset > 0; offset >>= 1)
blockSum += __shfl_down_sync(0xffffffff, blockSum, offset);
// ----- 5. Broadcast the block sum (all threads do it)-----
blockSum = __shfl_sync(0xFFFFFFFF, blockSum, 0);
// ----- 6. Calculate global RMS normalization factor (all threads calculate it) -----
float ss = blockSum;
ss /= size;
ss += 1e-5f;
ss = rsqrtf(ss);
// ----- 7. Normalize and scale each element -----
for (int j = tid; j < size; j += blockDim.x) {
o[j] = weight[j] * (ss * x[j]);
}
}