-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathHistoSeg_Train.py
638 lines (508 loc) · 24.9 KB
/
HistoSeg_Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import tensorflow as tf
tf.executing_eagerly()
print("Training Start ...")
train_images_arg = ''
train_masks_arg = ''
val_images_arg = ''
val_masks_arg = ''
width_arg = 256
height_arg = 256
epochs_arg = 100
batch_arg = 16
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_images', type=str, required=True)
parser.add_argument('--train_masks', type=str, required=True)
parser.add_argument('--val_images', type=str, required=True)
parser.add_argument('--val_masks', type=str, required=True)
parser.add_argument('--height', type=int, required=True)
parser.add_argument('--width', type=int, required=True)
parser.add_argument('--epochs', type=int, required=True)
parser.add_argument('--batch', type=int, required=True)
args = parser.parse_args()
train_images_arg = args.train_images
train_masks_arg = args.train_masks
val_images_arg = args.val_images
val_masks_arg = args.val_masks
width_arg = args.width
height_arg = args.height
epochs_arg = args.epochs
batch_arg = args.batch
print("Train Images Path: " + train_images_arg)
print("Train Masks Path: " + train_masks_arg)
print("Val Images Path: " + val_images_arg)
print("Val Masks Path: " + val_masks_arg)
print("Height: " + str(height_arg))
print("Width: " + str(width_arg))
print("Epochs: " + str(epochs_arg))
print("Batch Size: " + str(batch_arg))
print("-------------------------------------")
import os
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
# %matplotlib inline
from tqdm import tqdm
from tqdm import tqdm_notebook, tnrange
from itertools import chain
from skimage.io import imread, imshow, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
from sklearn.model_selection import train_test_split
import tensorflow as tf
#import tensorflow.compat.v1 as tf
#tf.disable_v2_behavior()
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input, BatchNormalization, Activation, Dense, Dropout
from tensorflow.keras.layers import Lambda, RepeatVector, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.layers import MaxPooling2D, GlobalMaxPool2D
from tensorflow.keras.layers import concatenate, add
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
print("Tensorflow Version")
print(tf.__version__)
print("Tensorflow Keras Version")
print(tf.keras.__version__)
print("___________________")
print("")
# Commented out IPython magic to ensure Python compatibility.
# %matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
from pylab import rcParams
import seaborn as sns
import random
print("Loading Dataset ...")
X_train = np.load(train_images_arg)
y_train = np.load(train_masks_arg)
X_test = np.load(val_images_arg)
y_test = np.load(val_masks_arg)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
print("Dataset Loaded Successfully")
from tensorflow.python.keras.models import Model
from tensorflow.python.keras import layers
from tensorflow.python.keras.layers import Input
from tensorflow.python.keras.layers import Lambda
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Concatenate
from tensorflow.python.keras.layers import Add
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import ZeroPadding2D
from tensorflow.python.keras.layers import GlobalAveragePooling2D
from tensorflow.python.keras.utils.layer_utils import get_source_inputs
from tensorflow.python.keras.utils.data_utils import get_file
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.applications.imagenet_utils import preprocess_input
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
def q_au(x1,x2,qau_n):
f_a = x1
f_b = Conv2D(1, (1, 1), padding='same',name='Quick_AU'+str(qau_n), use_bias=False)(x2)
f_act = tf.keras.layers.Activation('sigmoid')(f_b)
f_add = tf.keras.layers.Add()([f_act, f_a])
return f_add
WEIGHTS_PATH_MOBILE = "HistoSeg_mobilenetv2_tf_dim_ordering_tf_kernels.h5"
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
if stride == 1:
depth_padding = 'same'
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
depth_padding = 'valid'
if not depth_activation:
x = Activation(tf.nn.relu)(x)
x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation(tf.nn.relu)(x)
x = Conv2D(filters, (1, 1), padding='same',
use_bias=False, name=prefix + '_pointwise')(x)
x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation(tf.nn.relu)(x)
return x
def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1):
if stride == 1:
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='same', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='valid', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
def _xception_block(inputs, depth_list, prefix, skip_connection_type, stride,
rate=1, depth_activation=False, return_skip=False):
residual = inputs
for i in range(3):
residual = SepConv_BN(residual,
depth_list[i],
prefix + '_separable_conv{}'.format(i + 1),
stride=stride if i == 2 else 1,
rate=rate,
depth_activation=depth_activation)
if i == 1:
skip = residual
if skip_connection_type == 'conv':
shortcut = _conv2d_same(inputs, depth_list[-1], prefix + '_shortcut',
kernel_size=1,
stride=stride)
shortcut = BatchNormalization(name=prefix + '_shortcut_BN')(shortcut)
outputs = layers.add([residual, shortcut])
elif skip_connection_type == 'sum':
outputs = layers.add([residual, inputs])
elif skip_connection_type == 'none':
outputs = residual
if return_skip:
return outputs, skip
else:
return outputs
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1):
in_channels = inputs.shape[-1]
#inputs.keras_shape[-1]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'expanded_conv_{}_'.format(block_id)
if block_id:
# Expand
x = Conv2D(expansion * in_channels, kernel_size=1, padding='same',
use_bias=False, activation=None,
name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'expand_BN')(x)
x = Activation(tf.nn.relu6, name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
# Depthwise
x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None,
use_bias=False, padding='same', dilation_rate=(rate, rate),
name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = Activation(tf.nn.relu6, name=prefix + 'depthwise_relu')(x)
# Project
x = Conv2D(pointwise_filters,
kernel_size=1, padding='same', use_bias=False, activation=None,
name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'project_BN')(x)
if skip_connection:
return Add(name=prefix + 'add')([inputs, x])
# if in_channels == pointwise_filters and stride == 1:
# return Add(name='res_connect_' + str(block_id))([inputs, x])
return x
def HistoSeg(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3), classes=21, backbone='mobilenetv2',
OS=16, alpha=1., activation=None):
if not (weights in {'pascal_voc', 'cityscapes', None}):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `pascal_voc`, or `cityscapes` '
'(pre-trained on PASCAL VOC)')
if not (backbone in {'xception', 'mobilenetv2'}):
raise ValueError('The `backbone` argument should be either '
'`xception` or `mobilenetv2` ')
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
img_input = input_tensor
if backbone == 'xception':
if OS == 8:
entry_block3_stride = 1
middle_block_rate = 2 # ! Not mentioned in paper, but required
exit_block_rates = (2, 4)
atrous_rates = (12, 24, 36)
else:
entry_block3_stride = 2
middle_block_rate = 1
exit_block_rates = (1, 2)
atrous_rates = (6, 12, 18)
x = Conv2D(32, (3, 3), strides=(2, 2),
name='entry_flow_conv1_1', use_bias=False, padding='same')(img_input)
x = BatchNormalization(name='entry_flow_conv1_1_BN')(x)
x = Activation(tf.nn.relu)(x)
x = _conv2d_same(x, 64, 'entry_flow_conv1_2', kernel_size=3, stride=1)
x = BatchNormalization(name='entry_flow_conv1_2_BN')(x)
x = Activation(tf.nn.relu)(x)
x = _xception_block(x, [128, 128, 128], 'entry_flow_block1',
skip_connection_type='conv', stride=2,
depth_activation=False)
x, skip1 = _xception_block(x, [256, 256, 256], 'entry_flow_block2',
skip_connection_type='conv', stride=2,
depth_activation=False, return_skip=True)
x = _xception_block(x, [728, 728, 728], 'entry_flow_block3',
skip_connection_type='conv', stride=entry_block3_stride,
depth_activation=False)
for i in range(16):
x = _xception_block(x, [728, 728, 728], 'middle_flow_unit_{}'.format(i + 1),
skip_connection_type='sum', stride=1, rate=middle_block_rate,
depth_activation=False)
x = _xception_block(x, [728, 1024, 1024], 'exit_flow_block1',
skip_connection_type='conv', stride=1, rate=exit_block_rates[0],
depth_activation=False)
x = _xception_block(x, [1536, 1536, 2048], 'exit_flow_block2',
skip_connection_type='none', stride=1, rate=exit_block_rates[1],
depth_activation=True)
else:
OS = 8
first_block_filters = _make_divisible(32 * alpha, 8)
x = Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2), padding='same',
use_bias=False, name='Conv')(img_input)
x = BatchNormalization(
epsilon=1e-3, momentum=0.999, name='Conv_BN')(x)
x = Activation(tf.nn.relu6, name='Conv_Relu6')(x)
x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
expansion=1, block_id=0, skip_connection=False)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
expansion=6, block_id=1, skip_connection=False)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
expansion=6, block_id=2, skip_connection=True)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
expansion=6, block_id=3, skip_connection=False)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=4, skip_connection=True)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,expansion=6, block_id=5, skip_connection=True)
x_1 = q_au(x,x,1)
# stride in block 6 changed from 2 -> 1, so we need to use rate = 2
x = _inverted_res_block(x_1, filters=64, alpha=alpha, stride=1, # 1!
expansion=6, block_id=6, skip_connection=False)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=7, skip_connection=True)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=8, skip_connection=True)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=9, skip_connection=True)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=10, skip_connection=False)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=11, skip_connection=True)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=12, skip_connection=True)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=2, # 1!
expansion=6, block_id=13, skip_connection=False)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4,
expansion=6, block_id=14, skip_connection=True)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4,
expansion=6, block_id=15, skip_connection=True)
x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1, rate=4,expansion=6, block_id=16, skip_connection=False)
# end of feature extractor
# branching for Atrous Spatial Pyramid Pooling
# Image Feature branch
shape_before = tf.shape(x)
b4 = GlobalAveragePooling2D()(x)
# from (b_size, channels)->(b_size, 1, 1, channels)
b4 = Lambda(lambda x: K.expand_dims(x, 1))(b4)
b4 = Lambda(lambda x: K.expand_dims(x, 1))(b4)
b4 = Conv2D(256, (1, 1), padding='same',
use_bias=False, name='image_pooling')(b4)
b4 = BatchNormalization(name='image_pooling_BN', epsilon=1e-5)(b4)
b4 = Activation(tf.nn.relu)(b4)
# upsample. have to use compat because of the option align_corners
size_before = tf.keras.backend.int_shape(x)
b4 = Lambda(lambda x: tf.compat.v1.image.resize(x, size_before[1:3],
method='bilinear', align_corners=True))(b4)
# simple 1x1
b0 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='aspp0')(x)
b0 = BatchNormalization(name='aspp0_BN', epsilon=1e-5)(b0)
b0 = Activation(tf.nn.relu, name='aspp0_activation')(b0)
# there are only 2 branches in mobilenetV2. not sure why
if backbone == 'xception':
# rate = 6 (12)
b1 = SepConv_BN(x, 256, 'aspp1',
rate=atrous_rates[0], depth_activation=True, epsilon=1e-5)
# rate = 12 (24)
b2 = SepConv_BN(x, 256, 'aspp2',
rate=atrous_rates[1], depth_activation=True, epsilon=1e-5)
# rate = 18 (36)
b3 = SepConv_BN(x, 256, 'aspp3',
rate=atrous_rates[2], depth_activation=True, epsilon=1e-5)
# concatenate ASPP branches & project
x = Concatenate()([b4, b0, b1, b2, b3])
else:
x = Concatenate()([b4, b0])
x = Conv2D(256, (1, 1), padding='same',use_bias=False, name='concat_projection')(x)
x = BatchNormalization(name='concat_projection_BN', epsilon=1e-5)(x)
x = q_au(x,x,2)
x_1 = Conv2D(256, (1, 1), padding='same',use_bias=False, name='q_au_conv')(x_1)
z = Add()([x, x_1])
x = Activation(tf.nn.relu)(z)
x = Dropout(0.1)(x)
# HistoSeg decoder
if backbone == 'xception':
# Feature projection
# x4 (x2) block
size_before2 = tf.keras.backend.int_shape(x)
x = Lambda(lambda xx: tf.compat.v1.image.resize(xx,
skip1.shape[1:3],
method='bilinear', align_corners=True))(x)
dec_skip1 = Conv2D(48, (1, 1), padding='same',
use_bias=False, name='feature_projection0')(skip1)
dec_skip1 = BatchNormalization(
name='feature_projection0_BN', epsilon=1e-5)(dec_skip1)
dec_skip1 = Activation(tf.nn.relu)(dec_skip1)
x = Concatenate()([x, dec_skip1])
x = SepConv_BN(x, 256, 'decoder_conv0',
depth_activation=True, epsilon=1e-5)
x = SepConv_BN(x, 256, 'decoder_conv1',
depth_activation=True, epsilon=1e-5)
# you can use it with arbitary number of classes
if (weights == 'pascal_voc' and classes == 21) or (weights == 'cityscapes' and classes == 19):
last_layer_name = 'logits_semantic'
else:
last_layer_name = 'custom_logits_semantic'
x = Conv2D(classes, (1, 1), padding='same', name=last_layer_name)(x)
size_before3 = tf.keras.backend.int_shape(img_input)
x = Lambda(lambda xx: tf.compat.v1.image.resize(xx,
size_before3[1:3],
method='bilinear', align_corners=True))(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
if activation in {'softmax', 'sigmoid'}:
x = tf.keras.layers.Activation(activation)(x)
model = Model(inputs, x, name='HistoSegplus')
# load weights
if weights == 'pascal_voc':
if backbone == 'xception':
weights_path = get_file('HistoSeg_xception_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH_X,
cache_subdir='models')
else:
weights_path = 'HistoSeg_mobilenetv2_tf_dim_ordering_tf_kernels.h5'
model.load_weights(weights_path, by_name=True)
elif weights == 'cityscapes':
if backbone == 'xception':
weights_path = get_file('HistoSeg_xception_tf_dim_ordering_tf_kernels_cityscapes.h5',
WEIGHTS_PATH_X_CS,
cache_subdir='models')
else:
weights_path = get_file('HistoSeg_mobilenetv2_tf_dim_ordering_tf_kernels_cityscapes.h5',
WEIGHTS_PATH_MOBILE_CS,
cache_subdir='models')
model.load_weights(weights_path, by_name=True)
return model
def preprocess_input(x):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Input array scaled to [-1.,1.]
"""
return preprocess_input(x, mode='tf')
from tensorflow.keras import backend as K
def dice_coef(y_true, y_pred, smooth=1):
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
return (2. * intersection + smooth) / (K.sum(K.square(y_true),-1) + K.sum(K.square(y_pred),-1) + smooth)
def dice_coef_loss(y_true, y_pred):
return 1-dice_coef(y_true, y_pred)
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def focal_loss(gamma=2., alpha=.25):
def focal_loss_fixed(y_true, y_pred):
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
return -K.mean(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.mean((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))
return focal_loss_fixed
def binary_focal_loss_fixed(y_true, y_pred, alpha = .25, gamma=2.):
y_true=y_true[:,:,:,0]
y_pred=y_pred[:,:,:,0]
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
epsilon = K.epsilon()
# clip to prevent NaN's and Inf's
pt_1 = K.clip(pt_1, epsilon, 1. - epsilon)
pt_0 = K.clip(pt_0, epsilon, 1. - epsilon)
return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) \
-K.sum((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))
def focal_dice(y_true, y_pred, alpha = .25, gamma=2.):
return dice_coef_loss(y_true, y_pred) + binary_focal_loss_fixed(y_true, y_pred, alpha = .25, gamma=2.)
bce = loss=tf.keras.losses.BinaryCrossentropy(from_logits=True)
def binary_cross_focal_dice(y_true, y_pred):
l = bce(y_true, y_pred)
return l + dice_coef_loss(y_true, y_pred)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
#from tensorflow.keras import optimizers
#RMS = optimizers.RMSprop()
#sgd = optimizers.SGD(lr=0.01, clipnorm=1.)
iou = tf.keras.metrics.MeanIoU(num_classes=2)
model = HistoSeg(weights='pascal_voc', input_tensor=None, input_shape=(height_arg, width_arg, 3), classes=1, backbone='mobilenetv2',
OS=16, alpha=1., activation='sigmoid')
model.compile(optimizer="adam", loss = [binary_cross_focal_dice], metrics=["accuracy", f1_m, precision_m, recall_m, dice_coef,iou])
print("HistoSeg Compiled Successfully")
#model.summary()
from tensorflow.python.keras.utils.vis_utils import plot_model
plot_model(model, to_file='HistoSeg_model_plot.png', show_shapes=True, show_layer_names=True)
callbacks = [
EarlyStopping(patience=10, verbose=1),
#ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1),
ModelCheckpoint('HistoSeg_epoch:{epoch:02d}_iou:{val_mean_io_u:.4f}_acc:{val_accuracy:.4f}_f1:{val_f1_m:.4f}_dice:{val_dice_coef:.4f}_.h5', monitor='val_accuracy', save_best_only=False, save_weights_only=True, verbose=1)
]
results=model.fit(X_train, y_train, batch_size=batch_arg, epochs=epochs_arg, callbacks=callbacks , validation_data=(X_test, y_test) , verbose = 1)
print("Finished Training .. !")
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["loss"], label="loss")
plt.plot(results.history["val_loss"], label="val_loss")
plt.plot( np.argmin(results.history["val_loss"]), np.min(results.history["val_loss"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("log_loss")
plt.legend()
plt.savefig("loss.png")