-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_linear_regression.py
73 lines (63 loc) · 1.92 KB
/
train_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import ipdb
import torch
import torch.optim as optim
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from data import HeartFailureDataset
from models import LinearRegression
# custom collate_fn
def collate_fn(data):
feats = []
labels = []
for e in data:
feats.append(e["feat"])
labels.append(e["label"])
return torch.tensor(feats), torch.tensor(labels)
if __name__ == "__main__":
"""Get dataset"""
train_data = HeartFailureDataset(split="train")
test_data = HeartFailureDataset(split="test")
train_loader = DataLoader(
train_data, batch_size=64, shuffle=True, collate_fn=collate_fn
)
test_loader = DataLoader(
test_data, batch_size=64, shuffle=True, collate_fn=collate_fn
)
"""Get Train Configurations"""
in_dim = 18
out_dim = 2
total_epoch = 100
learning_rate = 1e-3
model = LinearRegression(in_dim=in_dim, out_dim=out_dim)
criterion = CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
"""Start Training"""
for epoch in range(total_epoch):
for feat, label in train_loader:
out = model(feat)
loss = criterion(out, label)
loss.backward()
optimizer.step()
print(loss, end="\r")
"""Evaluation"""
total = 0
correct = 0
for feat, label in test_loader:
out = model(feat)
pred = torch.argmax(out, dim=-1)
total += len(pred)
correct += torch.sum(pred == label).item()
print("\n")
print(
f"Total: {total}, Correct: {correct}, Accuracy: {round(correct/total*100, 2)}"
)
"""Checkpointing"""
PATH = "./data/model_ckpt.pt"
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"accuracy": round(correct / total * 100, 2),
},
PATH,
)