-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgradcam.py
155 lines (112 loc) · 5.67 KB
/
gradcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
Title: Grad-CAM class activation visualization
Author: [fchollet](https://twitter.com/fchollet)
Date created: 2020/04/26
Last modified: 2020/05/14
Description: How to obtain a class activation heatmap for an image classification model.
"""
"""
Modified for use in MalNet by safreita1
"""
import os
import numpy as np
import tensorflow as tf
import matplotlib.cm as cm
from tensorflow import keras
from collections import defaultdict
from process import create_image_symlinks
from main import get_generators, get_loss, evaluate
def get_img_array(img_path):
img = keras.preprocessing.image.load_img(img_path, target_size=(256, 256))
array = keras.preprocessing.image.img_to_array(img)
array = np.expand_dims(array, axis=0) / 255.
return array
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, classifier_layer_names):
# First, we create a model that maps the input image to the activations of the last conv layer
last_conv_layer = model.get_layer(last_conv_layer_name)
last_conv_layer_model = keras.Model(model.inputs, last_conv_layer.output)
# Second, we create a model that maps the activations of the last conv layer to the final class predictions
classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:])
x = classifier_input
for layer_name in classifier_layer_names:
x = model.get_layer(layer_name)(x)
classifier_model = keras.Model(classifier_input, x)
# Then, we compute the gradient of the top predicted class for our input image with respect to the activations of the last conv layer
with tf.GradientTape() as tape:
# Compute activations of the last conv layer and make the tape watch it
last_conv_layer_output = last_conv_layer_model(np.swapaxes(img_array, 0, -1))
tape.watch(last_conv_layer_output)
# Compute class predictions
preds = classifier_model(last_conv_layer_output)
top_pred_index = tf.argmax(preds[0])
top_class_channel = preds[:, top_pred_index]
# This is the gradient of the top predicted class with regard to the output feature map of the last conv layer
grads = tape.gradient(top_class_channel, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array by "how important this channel is" with regard to the top predicted class
last_conv_layer_output = last_conv_layer_output.numpy()[0]
pooled_grads = pooled_grads.numpy()
for i in range(pooled_grads.shape[-1]):
last_conv_layer_output[:, :, i] *= pooled_grads[i]
# The channel-wise mean of the resulting feature map is our heatmap of class activation
heatmap = np.mean(last_conv_layer_output, axis=-1)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = np.maximum(heatmap, 0) / np.max(heatmap)
return heatmap
def run_gradcam2(file_path, model):
img_array = get_img_array(file_path)
last_conv_layer_name = 'stage4_unit2_conv2'
classifier_layer_names = ['bn1', 'relu1', 'pool1', 'fc1', 'softmax']
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name, classifier_layer_names)
# We load the original image
img = keras.preprocessing.image.load_img(file_path)
img = keras.preprocessing.image.img_to_array(img)
# We rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
# We use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# We use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# We create an image with RGB colorized heatmap
jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * 0.4 + img
superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img)
save_path = os.getcwd() + '/gradcam/' + file_path.split('test/')[1]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
superimposed_img.save(save_path)
def create_visuals(model_path):
from config import args
args['malnet_tiny'] = False
create_image_symlinks(args)
train_gen, val_gen, test_gen = get_generators(args)
args['y_train'] = train_gen.labels
args['class_indexes'] = list(val_gen.class_indices.values())
args['class_labels'] = list(val_gen.class_indices.keys())
args['num_classes'] = len(val_gen.class_indices.keys())
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(d) for d in args['devices'])
model = tf.keras.models.load_model(model_path, compile=False)
loss, _ = get_loss(args)
model.compile(loss=loss, optimizer='adam', metrics=[])
y_pred, y_scores = evaluate(test_gen, model)
y_true = test_gen.labels.tolist()
images_to_view = []
counts = defaultdict(int)
for idx, label in enumerate(y_true):
if counts[label] < 20:
images_to_view.append(idx)
counts[label] += 1
for idx in images_to_view:
if y_pred[idx] == y_true[idx]:
path = test_gen.filepaths[idx]
run_gradcam2(path, model)
def main():
model_path = '/raid/sfreitas3/malnet-image/info/logs/num_excluded=0/group=type/color=grayscale/pretrain=False/model=resnet18_loss=categorical_crossentropy_reweight=effective_num_beta=0.999/epochs=100/best_model.pt'
create_visuals(model_path)
if __name__ == '__main__':
main()