This repository has been archived by the owner on Mar 26, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path04-generate-valid-set-preds-system-1.py
89 lines (70 loc) · 2.68 KB
/
04-generate-valid-set-preds-system-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pickle
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from utils import Task5Model
with open('./data/metadata.pkl', 'rb') as f:
metadata = pickle.load(f)
validate_files = list(set(metadata['coarse_test'].index.tolist()))
X = np.concatenate([
np.expand_dims(np.load('./data/logmelspec/{}.npy'.format(x)).T[:635, :], axis=0)
for x in validate_files])
X = X[:, None, :, :]
channel_means = np.load('./data/channel_means.npy')
channel_stds = np.load('./data/channel_stds.npy')
X = (X - channel_means) / channel_stds
class AudioDataset(Dataset):
def __init__(self, X):
self.X = X
def __len__(self):
return self.X.shape[0]
def __getitem__(self, idx):
sample = self.X[idx, ...]
i = np.random.randint(sample.shape[1])
sample = torch.cat([
sample[:, i:, :],
sample[:, :i, :]],
dim=1)
return sample
valid_dataset = AudioDataset(torch.Tensor(X))
valid_loader = DataLoader(valid_dataset, 64, shuffle=False)
cuda = True
device = torch.device('cuda:0' if cuda else 'cpu')
print('Device: ', device)
model = Task5Model(31).to(device)
model.load_state_dict(torch.load('./data/model_system1'))
all_preds = []
for _ in range(10):
preds = []
for inputs in valid_loader:
inputs = inputs.to(device)
with torch.set_grad_enabled(False):
model = model.eval()
outputs = model(inputs)
preds.append(outputs.detach().cpu().numpy())
preds = np.concatenate(preds, axis=0)
preds = (1 / (1 + np.exp(-preds)))
all_preds.append(preds)
tmp = all_preds[0]
for x in all_preds[1:]:
tmp += x
tmp = tmp / 10
preds = tmp
output_df = pd.DataFrame(
preds, columns=[
'1_engine', '2_machinery-impact', '3_non-machinery-impact',
'4_powered-saw', '5_alert-signal', '6_music', '7_human-voice', '8_dog',
'1-1_small-sounding-engine', '1-2_medium-sounding-engine',
'1-3_large-sounding-engine', '2-1_rock-drill', '2-2_jackhammer',
'2-3_hoe-ram', '2-4_pile-driver', '3-1_non-machinery-impact',
'4-1_chainsaw', '4-2_small-medium-rotating-saw',
'4-3_large-rotating-saw', '5-1_car-horn', '5-2_car-alarm', '5-3_siren',
'5-4_reverse-beeper', '6-1_stationary-music', '6-2_mobile-music',
'6-3_ice-cream-truck', '7-1_person-or-small-group-talking',
'7-2_person-or-small-group-shouting', '7-3_large-crowd',
'7-4_amplified-speech', '8-1_dog-barking-whining'])
output_df['audio_filename'] = pd.Series(
validate_files,
index=output_df.index)
output_df.to_csv('data/valid-set-preds-system-1.csv', index=False)