-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathassim.f90
59 lines (52 loc) · 2.06 KB
/
assim.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
!> @author
!> Sam Hatfield, AOPP, University of Oxford
!> @brief
!> Contains function for performing the 4DVar data assimilation technique.
module assim
use params
use lorenz63, only: run_adjoint
implicit none
private
public calc_cost, calc_cost_grad
contains
!> @brief
!> Calculates cost function for a given nonlinear trajectory with respect
!> to the given observations
!> @param[in] tstep the length of the assimilation window in timesteps
!> @param[in] traj the nonlinear trajectory
!> @param[in] obs the observations
!> @return J the cost function
function calc_cost(tstep, traj, obs) result(J)
integer, intent(in) :: tstep
real(dp), intent(in) :: traj(tstep,3), obs(tstep/freq,3)
real(dp) :: J
integer :: i
! Calculate cost function
J = 0.0_dp
do i = 1, tstep, freq
J = J + 0.5 * sum((traj(i,:) - obs(1+i/freq,:))**2)/obs_var
end do
end function calc_cost
!> @brief
!> Calculate gradient of cost function for a given nonlinear trajectory
!> with respect to the given observations, using the adjoint model.
!> @param[in] tstep the length of the assimilation window in timesteps
!> @param[in] traj the nonlinear trajectory
!> @param[in] obs the observations
!> @return hat the gradient of the cost function with respect to the
!> initial perturbation
function calc_cost_grad(tstep, traj, obs) result(hat)
integer, intent(in) :: tstep
real(dp), intent(in) :: traj(tstep,3), obs(tstep/freq,3)
real(dp) :: hat(3)
integer :: i
! Calculate first normalised innovation
hat = (traj(last,:) - obs(1+last/freq,:))/obs_var
! Step backwards through time, summing each normalised innovation
! while using the adjoint model to evolve them backwards at each step
do i = last-freq, 1, -freq
hat = run_adjoint(freq+1, traj(i:i+freq,:), hat) &
& + (traj(i,:) - obs(1+i/freq,:))/obs_var
end do
end function calc_cost_grad
end module assim