-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.py
1144 lines (944 loc) · 60.3 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2011, Alex Krizhevsky (akrizhevsky@gmail.com)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from math import exp
import sys
import ConfigParser as cfg
import os
import numpy as n
import numpy.random as nr
from math import ceil, floor
from ordereddict import OrderedDict
from os import linesep as NL
from options import OptionsParser
import re
class LayerParsingError(Exception):
pass
# A neuron that doesn't take parameters
class NeuronParser:
def __init__(self, type, func_str, uses_acts=True, uses_inputs=True):
self.type = type
self.func_str = func_str
self.uses_acts = uses_acts
self.uses_inputs = uses_inputs
def parse(self, type):
if type == self.type:
return {'type': self.type,
'params': {},
'usesActs': self.uses_acts,
'usesInputs': self.uses_inputs}
return None
# A neuron that takes parameters
class ParamNeuronParser(NeuronParser):
neuron_regex = re.compile(r'^\s*(\w+)\s*\[\s*(\w+(\s*,\w+)*)\s*\]\s*$')
def __init__(self, type, func_str, uses_acts=True, uses_inputs=True):
NeuronParser.__init__(self, type, func_str, uses_acts, uses_inputs)
m = self.neuron_regex.match(type)
self.base_type = m.group(1)
self.param_names = m.group(2).split(',')
assert len(set(self.param_names)) == len(self.param_names)
def parse(self, type):
m = re.match(r'^%s\s*\[([\d,\.\s\-e]*)\]\s*$' % self.base_type, type)
if m:
try:
param_vals = [float(v.strip()) for v in m.group(1).split(',')]
if len(param_vals) == len(self.param_names):
return {'type': self.base_type,
'params': dict(zip(self.param_names, param_vals)),
'usesActs': self.uses_acts,
'usesInputs': self.uses_inputs}
except TypeError:
pass
return None
class AbsTanhNeuronParser(ParamNeuronParser):
def __init__(self):
ParamNeuronParser.__init__(self, 'abstanh[a,b]', 'f(x) = a * |tanh(b * x)|')
def parse(self, type):
dic = ParamNeuronParser.parse(self, type)
# Make b positive, since abs(tanh(bx)) = abs(tanh(-bx)) and the C++ code
# assumes b is positive.
if dic:
dic['params']['b'] = abs(dic['params']['b'])
return dic
# Subclass that throws more convnet-specific exceptions than the default
class MyConfigParser(cfg.SafeConfigParser):
def safe_get(self, section, option, f=cfg.SafeConfigParser.get, typestr=None, default=None):
try:
return f(self, section, option)
except cfg.NoOptionError, e:
if default is not None:
return default
raise LayerParsingError("Layer '%s': required parameter '%s' missing" % (section, option))
except ValueError, e:
if typestr is None:
raise e
raise LayerParsingError("Layer '%s': parameter '%s' must be %s" % (section, option, typestr))
def safe_get_list(self, section, option, f=str, typestr='strings', default=None):
v = self.safe_get(section, option, default=default)
if type(v) == list:
return v
try:
return [f(x.strip()) for x in v.split(',')]
except:
raise LayerParsingError("Layer '%s': parameter '%s' must be ','-delimited list of %s" % (section, option, typestr))
def safe_get_int(self, section, option, default=None):
return self.safe_get(section, option, f=cfg.SafeConfigParser.getint, typestr='int', default=default)
def safe_get_float(self, section, option, default=None):
return self.safe_get(section, option, f=cfg.SafeConfigParser.getfloat, typestr='float', default=default)
def safe_get_bool(self, section, option, default=None):
return self.safe_get(section, option, f=cfg.SafeConfigParser.getboolean, typestr='bool', default=default)
def safe_get_float_list(self, section, option, default=None):
return self.safe_get_list(section, option, float, typestr='floats', default=default)
def safe_get_int_list(self, section, option, default=None):
return self.safe_get_list(section, option, int, typestr='ints', default=default)
def safe_get_bool_list(self, section, option, default=None):
return self.safe_get_list(section, option, lambda x: x.lower() in ('true', '1'), typestr='bools', default=default)
# A class that implements part of the interface of MyConfigParser
class FakeConfigParser(object):
def __init__(self, dic):
self.dic = dic
def safe_get(self, section, option, default=None):
return self.dic[option]
class LayerParser:
def __init__(self):
self.dic = {}
self.set_defaults()
# Post-processing step -- this is called after all layers have been initialized
def optimize(self, layers):
self.dic['actsTarget'] = -1
self.dic['actsGradTarget'] = -1
# Add parameters from layer parameter file
def add_params(self, mcp):
pass
def init(self, dic):
self.dic = dic
return self
def set_defaults(self):
self.dic['outputs'] = 0
self.dic['parser'] = self
self.dic['requiresParams'] = False
# Does this layer use its own activity matrix
# for some purpose other than computing its output?
# Usually, this will only be true for layers that require their
# own activity matrix for gradient computations. For example, layers
# with logistic units must compute the gradient y * (1 - y), where y is
# the activity matrix.
#
# Layers that do not not use their own activity matrix should advertise
# this, since this will enable memory-saving matrix re-use optimizations.
#
# The default value of this property is True, for safety purposes.
# If a layer advertises that it does not use its own activity matrix when
# in fact it does, bad things will happen.
self.dic['usesActs'] = True
# Does this layer use the activity matrices of its input layers
# for some purpose other than computing its output?
#
# Again true by default for safety
self.dic['usesInputs'] = True
# Force this layer to use its own activity gradient matrix,
# instead of borrowing one from one of its inputs.
#
# This should be true for layers where the mapping from output
# gradient to input gradient is non-elementwise.
self.dic['forceOwnActs'] = True
# Does this layer need the gradient at all?
# Should only be true for layers with parameters (weights).
self.dic['gradConsumer'] = False
def parse(self, name, mcp, prev_layers, model=None):
self.prev_layers = prev_layers
self.dic['name'] = name
self.dic['type'] = mcp.safe_get(name, 'type')
return self.dic
def verify_float_range(self, v, param_name, _min, _max):
self.verify_num_range(v, param_name, _min, _max, strconv=lambda x: '%.3f' % x)
def verify_num_range(self, v, param_name, _min, _max, strconv=lambda x:'%d' % x):
if type(v) == list:
for i,vv in enumerate(v):
self._verify_num_range(vv, param_name, _min, _max, i, strconv=strconv)
else:
self._verify_num_range(v, param_name, _min, _max, strconv=strconv)
def _verify_num_range(self, v, param_name, _min, _max, input=-1, strconv=lambda x:'%d' % x):
layer_name = self.dic['name'] if input < 0 else '%s[%d]' % (self.dic['name'], input)
if _min is not None and _max is not None and (v < _min or v > _max):
raise LayerParsingError("Layer '%s': parameter '%s' must be in the range %s-%s" % (layer_name, param_name, strconv(_min), strconv(_max)))
elif _min is not None and v < _min:
raise LayerParsingError("Layer '%s': parameter '%s' must be greater than or equal to %s" % (layer_name, param_name, strconv(_min)))
elif _max is not None and v > _max:
raise LayerParsingError("Layer '%s': parameter '%s' must be smaller than or equal to %s" % (layer_name, param_name, strconv(_max)))
def verify_divisible(self, value, div, value_name, div_name=None, input_idx=0):
layer_name = self.dic['name'] if len(self.dic['inputs']) == 0 else '%s[%d]' % (self.dic['name'], input_idx)
if value % div != 0:
raise LayerParsingError("Layer '%s': parameter '%s' must be divisible by %s" % (layer_name, value_name, str(div) if div_name is None else "'%s'" % div_name))
def verify_str_in(self, value, lst):
if value not in lst:
raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], value, ", ".join("'%s'" % s for s in lst)))
def verify_int_in(self, value, lst):
if value not in lst:
raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], value, ", ".join("'%d'" % s for s in lst)))
# This looks for neuron=x arguments in various layers, and creates
# separate layer definitions for them.
@staticmethod
def detach_neuron_layers(layers):
layers_new = []
for i, l in enumerate(layers):
layers_new += [l]
if l['type'] != 'neuron' and 'neuron' in l and l['neuron']:
NeuronLayerParser().detach_neuron_layer(i, layers, layers_new)
return layers_new
@staticmethod
def parse_layers(layer_cfg_path, param_cfg_path, model, layers=[]):
try:
if not os.path.exists(layer_cfg_path):
raise LayerParsingError("Layer definition file '%s' does not exist" % layer_cfg_path)
if not os.path.exists(param_cfg_path):
raise LayerParsingError("Layer parameter file '%s' does not exist" % param_cfg_path)
if len(layers) == 0:
mcp = MyConfigParser(dict_type=OrderedDict)
mcp.read([layer_cfg_path])
for name in mcp.sections():
if not mcp.has_option(name, 'type'):
raise LayerParsingError("Layer '%s': no type given" % name)
ltype = mcp.safe_get(name, 'type')
if ltype not in layer_parsers:
raise LayerParsingError("Layer '%s': Unknown layer type: '%s'" % (name, ltype))
layers += [layer_parsers[ltype]().parse(name, mcp, layers, model)]
layers = LayerParser.detach_neuron_layers(layers)
for l in layers:
lp = layer_parsers[l['type']]()
l['parser'].optimize(layers)
del l['parser']
for l in layers:
if not l['type'].startswith('cost.'):
found = max(l['name'] in [layers[n]['name'] for n in l2['inputs']] for l2 in layers if 'inputs' in l2)
if not found:
raise LayerParsingError("Layer '%s' of type '%s' is unused" % (l['name'], l['type']))
mcp = MyConfigParser(dict_type=OrderedDict)
mcp.read([param_cfg_path])
for l in layers:
if not mcp.has_section(l['name']) and l['requiresParams']:
raise LayerParsingError("Layer '%s' of type '%s' requires extra parameters, but none given in file '%s'." % (l['name'], l['type'], param_cfg_path))
lp = layer_parsers[l['type']]().init(l)
lp.add_params(mcp)
lp.dic['conserveMem'] = model.op.get_value('conserve_mem')
except LayerParsingError, e:
print e
sys.exit(1)
return layers
@staticmethod
def register_layer_parser(ltype, cls):
if ltype in layer_parsers:
raise LayerParsingError("Layer type '%s' already registered" % ltype)
layer_parsers[ltype] = cls
# Any layer that takes an input (i.e. non-data layer)
class LayerWithInputParser(LayerParser):
def __init__(self, num_inputs=-1):
LayerParser.__init__(self)
self.num_inputs = num_inputs
def verify_num_params(self, params):
for param in params:
if len(self.dic[param]) != len(self.dic['inputs']):
raise LayerParsingError("Layer '%s': %s list length does not match number of inputs" % (self.dic['name'], param))
def optimize(self, layers):
LayerParser.optimize(self, layers)
dic = self.dic
# Check if I have an input that no one else uses.
if not dic['forceOwnActs']:
for i, inp in enumerate(dic['inputs']):
l = layers[inp]
if l['outputs'] == dic['outputs'] and sum('inputs' in ll and inp in ll['inputs'] for ll in layers) == 1:
# I can share my activity matrix with this layer
# if it does not use its activity matrix, and I
# do not need to remember my inputs.
if not l['usesActs'] and not dic['usesInputs']:
dic['actsTarget'] = i
# print "Layer '%s' sharing activity matrix with layer '%s'" % (dic['name'], l['name'])
# I can share my gradient matrix with this layer.
dic['actsGradTarget'] = i
# print "Layer '%s' sharing activity gradient matrix with layer '%s'" % (dic['name'], l['name'])
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerParser.parse(self, name, mcp, prev_layers, model)
dic['inputs'] = [inp.strip() for inp in mcp.safe_get(name, 'inputs').split(',')]
prev_names = [p['name'] for p in prev_layers]
for inp in dic['inputs']:
if inp not in prev_names:
raise LayerParsingError("Layer '%s': input layer '%s' not defined" % (name, inp))
dic['inputs'] = [prev_names.index(inp) for inp in dic['inputs']]
dic['inputLayers'] = [prev_layers[inp] for inp in dic['inputs']]
for inp in dic['inputs']:
if prev_layers[inp]['outputs'] == 0:
raise LayerParsingError("Layer '%s': input layer '%s' does not produce any output" % (name, prev_names[inp]))
dic['numInputs'] = [prev_layers[i]['outputs'] for i in dic['inputs']]
# Layers can declare a neuron activation function to apply to their output, as a shortcut
# to avoid declaring a separate neuron layer above themselves.
dic['neuron'] = mcp.safe_get(name, 'neuron', default="")
if self.num_inputs > 0 and len(dic['numInputs']) != self.num_inputs:
raise LayerParsingError("Layer '%s': number of inputs must be %d", name, self.num_inputs)
# input_layers = [prev_layers[i] for i in dic['inputs']]
# dic['gradConsumer'] = any(l['gradConsumer'] for l in dic['inputLayers'])
# dic['usesActs'] = dic['gradConsumer'] # A conservative setting by default for layers with input
return dic
def verify_img_size(self):
dic = self.dic
if dic['numInputs'][0] % dic['imgPixels'] != 0 or dic['imgSize'] * dic['imgSize'] != dic['imgPixels']:
raise LayerParsingError("Layer '%s': has %-d dimensional input, not interpretable as %d-channel images" % (dic['name'], dic['numInputs'][0], dic['channels']))
@staticmethod
def grad_consumers_below(dic):
if dic['gradConsumer']:
return True
if 'inputLayers' in dic:
return any(LayerWithInputParser.grad_consumers_below(l) for l in dic['inputLayers'])
def verify_no_grads(self):
if LayerWithInputParser.grad_consumers_below(self.dic):
raise LayerParsingError("Layer '%s': layers of type '%s' cannot propagate gradient and must not be placed over layers with parameters." % (self.dic['name'], self.dic['type']))
class NailbedLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['forceOwnActs'] = False
dic['usesActs'] = False
dic['usesInputs'] = False
dic['channels'] = mcp.safe_get_int(name, 'channels')
dic['stride'] = mcp.safe_get_int(name, 'stride')
self.verify_num_range(dic['channels'], 'channels', 1, None)
# Computed values
dic['imgPixels'] = dic['numInputs'][0] / dic['channels']
dic['imgSize'] = int(n.sqrt(dic['imgPixels']))
dic['outputsX'] = (dic['imgSize'] + dic['stride'] - 1) / dic['stride']
dic['start'] = (dic['imgSize'] - dic['stride'] * (dic['outputsX'] - 1)) / 2
dic['outputs'] = dic['channels'] * dic['outputsX']**2
self.verify_num_range(dic['outputsX'], 'outputsX', 0, None)
self.verify_img_size()
print "Initialized bed-of-nails layer '%s', producing %dx%d %d-channel output" % (name, dic['outputsX'], dic['outputsX'], dic['channels'])
return dic
class GaussianBlurLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['forceOwnActs'] = False
dic['usesActs'] = False
dic['usesInputs'] = False
dic['outputs'] = dic['numInputs'][0]
dic['channels'] = mcp.safe_get_int(name, 'channels')
dic['filterSize'] = mcp.safe_get_int(name, 'filterSize')
dic['stdev'] = mcp.safe_get_float(name, 'stdev')
self.verify_num_range(dic['channels'], 'channels', 1, None)
self.verify_int_in(dic['filterSize'], [3, 5, 7, 9])
# Computed values
dic['imgPixels'] = dic['numInputs'][0] / dic['channels']
dic['imgSize'] = int(n.sqrt(dic['imgPixels']))
dic['filter'] = n.array([exp(-(dic['filterSize']/2 - i)**2 / float(2 * dic['stdev']**2))
for i in xrange(dic['filterSize'])], dtype=n.float32).reshape(1, dic['filterSize'])
dic['filter'] /= dic['filter'].sum()
self.verify_img_size()
if dic['filterSize'] > dic['imgSize']:
raise LayerParsingError("Later '%s': filter size (%d) must be smaller than image size (%d)." % (dic['name'], dic['filterSize'], dic['imgSize']))
print "Initialized Gaussian blur layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels'])
return dic
class ResizeLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['forceOwnActs'] = False
dic['usesActs'] = False
dic['usesInputs'] = False
dic['channels'] = mcp.safe_get_int(name, 'channels')
dic['imgPixels'] = dic['numInputs'][0] / dic['channels']
dic['imgSize'] = int(n.sqrt(dic['imgPixels']))
dic['scale'] = mcp.safe_get_float(name, 'scale')
dic['tgtSize'] = int(floor(dic['imgSize'] / dic['scale']))
dic['tgtPixels'] = dic['tgtSize']**2
self.verify_num_range(dic['channels'], 'channels', 1, None)
# Really not recommended to use this for such severe scalings
self.verify_float_range(dic['scale'], 'scale', 0.5, 2)
dic['outputs'] = dic['channels'] * dic['tgtPixels']
self.verify_img_size()
self.verify_no_grads()
print "Initialized resize layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels'])
return dic
class RandomScaleLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['forceOwnActs'] = False
dic['usesActs'] = False
dic['usesInputs'] = False
dic['channels'] = mcp.safe_get_int(name, 'channels')
self.verify_num_range(dic['channels'], 'channels', 1, None)
# Computed values
dic['imgPixels'] = dic['numInputs'][0] / dic['channels']
dic['imgSize'] = int(n.sqrt(dic['imgPixels']))
dic['maxScale'] = mcp.safe_get_float(name, 'maxScale')
dic['tgtSize'] = int(floor(dic['imgSize'] / dic['maxScale']))
dic['tgtPixels'] = dic['tgtSize']**2
self.verify_float_range(dic['maxScale'], 'maxScale', 1, 2)
dic['outputs'] = dic['channels'] * dic['tgtPixels']
self.verify_img_size()
self.verify_no_grads()
print "Initialized random scale layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels'])
return dic
class ColorTransformLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['forceOwnActs'] = False
dic['usesActs'] = False
dic['usesInputs'] = False
# Computed values
dic['imgPixels'] = dic['numInputs'][0] / 3
dic['imgSize'] = int(n.sqrt(dic['imgPixels']))
dic['channels'] = 3
dic['outputs'] = dic['numInputs'][0]
self.verify_img_size()
self.verify_no_grads()
return dic
class RGBToYUVLayerParser(ColorTransformLayerParser):
def __init__(self):
ColorTransformLayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model=None):
dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model)
print "Initialized RGB --> YUV layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels'])
return dic
class RGBToLABLayerParser(ColorTransformLayerParser):
def __init__(self):
ColorTransformLayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model=None):
dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model)
dic['center'] = mcp.safe_get_bool(name, 'center', default=False)
print "Initialized RGB --> LAB layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels'])
return dic
class NeuronLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
@staticmethod
def get_unused_layer_name(layers, wish):
layer_names = set([l['name'] for l in layers])
if wish not in layer_names:
return wish
for i in xrange(1, 100):
name = '%s.%d' % (wish, i)
if name not in layer_names:
return name
raise LayerParsingError("This is insane.")
def parse_neuron(self, neuron_str):
for n in neuron_parsers:
p = n.parse(neuron_str)
if p: # Successfully parsed neuron, return it
self.dic['neuron'] = p
self.dic['usesActs'] = self.dic['neuron']['usesActs']
self.dic['usesInputs'] = self.dic['neuron']['usesInputs']
return
# Could not parse neuron
# Print available neuron types
colnames = ['Neuron type', 'Function']
m = max(len(colnames[0]), OptionsParser._longest_value(neuron_parsers, key=lambda x:x.type)) + 2
ntypes = [OptionsParser._bold(colnames[0].ljust(m))] + [n.type.ljust(m) for n in neuron_parsers]
fnames = [OptionsParser._bold(colnames[1])] + [n.func_str for n in neuron_parsers]
usage_lines = NL.join(ntype + fname for ntype,fname in zip(ntypes, fnames))
raise LayerParsingError("Layer '%s': unable to parse neuron type '%s'. Valid neuron types: %sWhere neurons have parameters, they must be floats." % (self.dic['name'], neuron_str, NL + usage_lines + NL))
def detach_neuron_layer(self, idx, layers, layers_new):
dic = self.dic
self.set_defaults()
dic['name'] = NeuronLayerParser.get_unused_layer_name(layers, '%s_neuron' % layers[idx]['name'])
dic['type'] = 'neuron'
dic['inputs'] = layers[idx]['name']
dic['neuron'] = layers[idx]['neuron']
dic = self.parse(dic['name'], FakeConfigParser(dic), layers_new)
# Link upper layers to this new one
for l in layers[idx+1:]:
if 'inputs' in l:
l['inputs'] = [i + (i >= len(layers_new) - 1) for i in l['inputs']]
if 'weightSourceLayerIndices' in l:
l['weightSourceLayerIndices'] = [i + (i >= len(layers_new)) for i in l['weightSourceLayerIndices']]
layers_new += [dic]
# print "Initialized implicit neuron layer '%s', producing %d outputs" % (dic['name'], dic['outputs'])
def parse(self, name, mcp, prev_layers, model=None):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['outputs'] = dic['numInputs'][0]
self.parse_neuron(dic['neuron'])
dic['forceOwnActs'] = False
print "Initialized neuron layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class EltwiseSumLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
if len(set(dic['numInputs'])) != 1:
raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs'])))
dic['outputs'] = dic['numInputs'][0]
dic['usesInputs'] = False
dic['usesActs'] = False
dic['forceOwnActs'] = False
dic['coeffs'] = mcp.safe_get_float_list(name, 'coeffs', default=[1.0] * len(dic['inputs']))
print "Initialized elementwise sum layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class EltwiseMaxLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
if len(dic['inputs']) < 2:
raise LayerParsingError("Layer '%s': elementwise max layer must have at least 2 inputs, got %d." % (name, len(dic['inputs'])))
if len(set(dic['numInputs'])) != 1:
raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs'])))
dic['outputs'] = dic['numInputs'][0]
print "Initialized elementwise max layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class WeightLayerParser(LayerWithInputParser):
LAYER_PAT = re.compile(r'^\s*([^\s\[]+)(?:\[(\d+)\])?\s*$') # matches things like layername[5], etc
def __init__(self):
LayerWithInputParser.__init__(self)
@staticmethod
def get_layer_name(name_str):
m = WeightLayerParser.LAYER_PAT.match(name_str)
if not m:
return None
return m.group(1), m.group(2)
def add_params(self, mcp):
dic, name = self.dic, self.dic['name']
dic['epsW'] = mcp.safe_get_float_list(name, 'epsW')
dic['epsB'] = mcp.safe_get_float(name, 'epsB')
dic['momW'] = mcp.safe_get_float_list(name, 'momW')
dic['momB'] = mcp.safe_get_float(name, 'momB')
dic['wc'] = mcp.safe_get_float_list(name, 'wc')
self.verify_num_params(['epsW', 'momW', 'wc'])
dic['gradConsumer'] = dic['epsB'] > 0 or any(w > 0 for w in dic['epsW'])
@staticmethod
def unshare_weights(layer, layers, matrix_idx=None):
def unshare(layer, layers, indices):
for i in indices:
if layer['weightSourceLayerIndices'][i] >= 0:
src_name = layers[layer['weightSourceLayerIndices'][i]]['name']
src_matrix_idx = layer['weightSourceMatrixIndices'][i]
layer['weightSourceLayerIndices'][i] = -1
layer['weightSourceMatrixIndices'][i] = -1
layer['weights'][i] = layer['weights'][i].copy()
layer['weightsInc'][i] = n.zeros_like(layer['weights'][i])
print "Unshared weight matrix %s[%d] from %s[%d]." % (layer['name'], i, src_name, src_matrix_idx)
else:
print "Weight matrix %s[%d] already unshared." % (layer['name'], i)
if 'weightSourceLayerIndices' in layer:
unshare(layer, layers, range(len(layer['inputs'])) if matrix_idx is None else [matrix_idx])
# Load weight/biases initialization module
def call_init_func(self, param_name, shapes, input_idx=-1):
dic = self.dic
func_pat = re.compile('^([^\.]+)\.([^\(\)]+)\s*(?:\(([^,]+(?:,[^,]+)*)\))?$')
m = func_pat.match(dic[param_name])
if not m:
raise LayerParsingError("Layer '%s': '%s' parameter must have format 'moduleName.functionName(param1,param2,...)'; got: %s." % (dic['name'], param_name, dic['initWFunc']))
module, func = m.group(1), m.group(2)
params = m.group(3).split(',') if m.group(3) is not None else []
try:
mod = __import__(module)
return getattr(mod, func)(dic['name'], input_idx, shapes, params=params) if input_idx >= 0 else getattr(mod, func)(dic['name'], shapes, params=params)
except (ImportError, AttributeError, TypeError), e:
raise LayerParsingError("Layer '%s': %s." % (dic['name'], e))
def make_weights(self, initW, rows, cols, order='C'):
dic = self.dic
dic['weights'], dic['weightsInc'] = [], []
if dic['initWFunc']: # Initialize weights from user-supplied python function
# Initialization function is supplied in the format
# module.func
for i in xrange(len(dic['inputs'])):
dic['weights'] += [self.call_init_func('initWFunc', (rows[i], cols[i]), input_idx=i)]
if type(dic['weights'][i]) != n.ndarray:
raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], i, dic['initWFunc'], type(dic['weights'][i])))
if dic['weights'][i].dtype != n.float32:
raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must weight matrices consisting of single-precision floats. Got: %s." % (dic['name'], i, dic['initWFunc'], dic['weights'][i].dtype))
if dic['weights'][i].shape != (rows[i], cols[i]):
raise LayerParsingError("Layer '%s[%d]': weight matrix returned by weight initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], i, dic['initWFunc'], (rows[i], cols[i]), dic['weights'][i].shape))
# Convert to desired order
dic['weights'][i] = n.require(dic['weights'][i], requirements=order)
dic['weightsInc'] += [n.zeros_like(dic['weights'][i])]
print "Layer '%s[%d]' initialized weight matrices from function %s" % (dic['name'], i, dic['initWFunc'])
else:
for i in xrange(len(dic['inputs'])):
if dic['weightSourceLayerIndices'][i] >= 0: # Shared weight matrix
src_layer = self.prev_layers[dic['weightSourceLayerIndices'][i]] if dic['weightSourceLayerIndices'][i] < len(self.prev_layers) else dic
dic['weights'] += [src_layer['weights'][dic['weightSourceMatrixIndices'][i]]]
dic['weightsInc'] += [src_layer['weightsInc'][dic['weightSourceMatrixIndices'][i]]]
if dic['weights'][i].shape != (rows[i], cols[i]):
raise LayerParsingError("Layer '%s': weight sharing source matrix '%s' has shape %dx%d; should be %dx%d."
% (dic['name'], dic['weightSource'][i], dic['weights'][i].shape[0], dic['weights'][i].shape[1], rows[i], cols[i]))
print "Layer '%s' initialized weight matrix %d from %s" % (dic['name'], i, dic['weightSource'][i])
else:
dic['weights'] += [n.array(initW[i] * nr.randn(rows[i], cols[i]), dtype=n.single, order=order)]
dic['weightsInc'] += [n.zeros_like(dic['weights'][i])]
def make_biases(self, rows, cols, order='C'):
dic = self.dic
if dic['initBFunc']:
dic['biases'] = self.call_init_func('initBFunc', (rows, cols))
if type(dic['biases']) != n.ndarray:
raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], dic['initBFunc'], type(dic['biases'])))
if dic['biases'].dtype != n.float32:
raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object consisting of single-precision floats. Got: %s." % (dic['name'], dic['initBFunc'], dic['biases'].dtype))
if dic['biases'].shape != (rows, cols):
raise LayerParsingError("Layer '%s': bias vector returned by bias initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], dic['initBFunc'], (rows, cols), dic['biases'].shape))
dic['biases'] = n.require(dic['biases'], requirements=order)
print "Layer '%s' initialized bias vector from function %s" % (dic['name'], dic['initBFunc'])
else:
dic['biases'] = dic['initB'] * n.ones((rows, cols), order='C', dtype=n.single)
dic['biasesInc'] = n.zeros_like(dic['biases'])
def parse(self, name, mcp, prev_layers, model):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['requiresParams'] = True
dic['gradConsumer'] = True
dic['initW'] = mcp.safe_get_float_list(name, 'initW', default=0.01)
dic['initB'] = mcp.safe_get_float(name, 'initB', default=0)
dic['initWFunc'] = mcp.safe_get(name, 'initWFunc', default="")
dic['initBFunc'] = mcp.safe_get(name, 'initBFunc', default="")
# Find shared weight matrices
dic['weightSource'] = mcp.safe_get_list(name, 'weightSource', default=[''] * len(dic['inputs']))
self.verify_num_params(['initW', 'weightSource'])
prev_names = map(lambda x: x['name'], prev_layers)
dic['weightSourceLayerIndices'] = []
dic['weightSourceMatrixIndices'] = []
for i, src_name in enumerate(dic['weightSource']):
src_layer_idx = src_layer_matrix_idx = -1
if src_name != '':
src_layer_match = WeightLayerParser.get_layer_name(src_name)
if src_layer_match is None:
raise LayerParsingError("Layer '%s': unable to parse weight sharing source '%s'. Format is layer[idx] or just layer, in which case idx=0 is used." % (name, src_name))
src_layer_name = src_layer_match[0]
src_layer_matrix_idx = int(src_layer_match[1]) if src_layer_match[1] is not None else 0
if prev_names.count(src_layer_name) == 0 and src_layer_name != name:
raise LayerParsingError("Layer '%s': weight sharing source layer '%s' does not exist." % (name, src_layer_name))
src_layer_idx = prev_names.index(src_layer_name) if src_layer_name != name else len(prev_names)
src_layer = prev_layers[src_layer_idx] if src_layer_name != name else dic
if src_layer['type'] != dic['type']:
raise LayerParsingError("Layer '%s': weight sharing source layer '%s' is of type '%s'; should be '%s'." % (name, src_layer_name, src_layer['type'], dic['type']))
if src_layer_name != name and len(src_layer['weights']) <= src_layer_matrix_idx:
raise LayerParsingError("Layer '%s': weight sharing source layer '%s' has %d weight matrices, but '%s[%d]' requested." % (name, src_layer_name, len(src_layer['weights']), src_name, src_layer_matrix_idx))
if src_layer_name == name and src_layer_matrix_idx >= i:
raise LayerParsingError("Layer '%s': weight sharing source '%s[%d]' not defined yet." % (name, name, src_layer_matrix_idx))
dic['weightSourceLayerIndices'] += [src_layer_idx]
dic['weightSourceMatrixIndices'] += [src_layer_matrix_idx]
return dic
class FCLayerParser(WeightLayerParser):
def __init__(self):
WeightLayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model)
dic['usesActs'] = False
dic['outputs'] = mcp.safe_get_int(name, 'outputs')
self.verify_num_range(dic['outputs'], 'outputs', 1, None)
self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']] * len(dic['numInputs']), order='F')
self.make_biases(1, dic['outputs'], order='F')
print "Initialized fully-connected layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class LocalLayerParser(WeightLayerParser):
def __init__(self):
WeightLayerParser.__init__(self)
# Convert convolutional layer to unshared, locally-connected layer
@staticmethod
def conv_to_local(layers, idx):
layer = layers[idx]
if layer['type'] == 'conv':
layer['type'] = 'local'
for inp in xrange(len(layer['inputs'])):
src_layer_idx = layer['weightSourceLayerIndices'][inp]
if layer['weightSourceLayerIndices'][inp] >= 0:
src_layer = layers[src_layer_idx]
src_matrix_idx = layer['weightSourceMatrixIndices'][inp]
LocalLayerParser.conv_to_local(layers, src_layer_idx)
for w in ('weights', 'weightsInc'):
layer[w][inp] = src_layer[w][src_matrix_idx]
else:
layer['weights'][inp] = n.require(n.reshape(n.tile(n.reshape(layer['weights'][inp], (1, n.prod(layer['weights'][inp].shape))), (layer['modules'], 1)),
(layer['modules'] * layer['filterChannels'][inp] * layer['filterPixels'][inp], layer['filters'])),
requirements='C')
layer['weightsInc'][inp] = n.zeros_like(layer['weights'][inp])
if layer['sharedBiases']:
layer['biases'] = n.require(n.repeat(layer['biases'], layer['modules'], axis=0), requirements='C')
layer['biasesInc'] = n.zeros_like(layer['biases'])
print "Converted layer '%s' from convolutional to unshared, locally-connected" % layer['name']
# Also call this function on any layers sharing my weights
for i, l in enumerate(layers):
if 'weightSourceLayerIndices' in l and idx in l['weightSourceLayerIndices']:
LocalLayerParser.conv_to_local(layers, i)
return layer
# Returns (groups, filterChannels) array that represents the set
# of image channels to which each group is connected
def gen_rand_conns(self, groups, channels, filterChannels, inputIdx):
dic = self.dic
overSample = groups * filterChannels / channels
filterConns = [x for i in xrange(overSample) for x in nr.permutation(range(channels))]
if dic['initCFunc']: # Initialize connectivity from outside source
filterConns = self.call_init_func('initCFunc', (groups, channels, filterChannels), input_idx=inputIdx)
if len(filterConns) != overSample * channels:
raise LayerParsingError("Layer '%s[%d]': random connectivity initialization function %s must return list of length <groups> * <filterChannels> = %d; got: %d" % (dic['name'], inputIdx, dic['initCFunc'], len(filterConns)))
if any(c not in range(channels) for c in filterConns):
raise LayerParsingError("Layer '%s[%d]': random connectivity initialization function %s must return list of channel indices in the range 0-<channels-1> = 0-%d." % (dic['name'], inputIdx, dic['initCFunc'], channels-1))
# Every "channels" sub-slice should be a permutation of range(channels)
if any(len(set(c)) != len(c) for c in [filterConns[o*channels:(o+1)*channels] for o in xrange(overSample)]):
raise LayerParsingError("Layer '%s[%d]': random connectivity initialization function %s must return list of channel indices such that every non-overlapping sub-list of <channels> = %d elements is a permutation of the integers 0-<channels-1> = 0-%d." % (dic['name'], inputIdx, dic['initCFunc'], channels, channels-1))
elif dic['weightSourceLayerIndices'][inputIdx] >= 0: # Shared weight matrix
src_layer = self.prev_layers[dic['weightSourceLayerIndices'][inputIdx]] if dic['weightSourceLayerIndices'][inputIdx] < len(self.prev_layers) else dic
src_inp = dic['weightSourceMatrixIndices'][inputIdx]
if 'randSparse' not in src_layer or not src_layer['randSparse']:
raise LayerParsingError("Layer '%s[%d]': randSparse is true in this layer but false in weight sharing source layer '%s[%d]'." % (dic['name'], inputIdx, src_layer['name'], src_inp))
if (groups, channels, filterChannels) != (src_layer['groups'][src_inp], src_layer['channels'][src_inp], src_layer['filterChannels'][src_inp]):
raise LayerParsingError("Layer '%s[%d]': groups, channels, filterChannels set to %d, %d, %d, respectively. Does not match setting in weight sharing source layer '%s[%d]': %d, %d, %d." % (dic['name'], inputIdx, groups, channels, filterChannels, src_layer['name'], src_inp, src_layer['groups'][src_inp], src_layer['channels'][src_inp], src_layer['filterChannels'][src_inp]))
filterConns = src_layer['filterConns'][src_inp]
return filterConns
def parse(self, name, mcp, prev_layers, model):
dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model)
dic['requiresParams'] = True
dic['usesActs'] = False
# Supplied values
dic['channels'] = mcp.safe_get_int_list(name, 'channels')
dic['padding'] = mcp.safe_get_int_list(name, 'padding', default=[0]*len(dic['inputs']))
dic['stride'] = mcp.safe_get_int_list(name, 'stride', default=[1]*len(dic['inputs']))
dic['filterSize'] = mcp.safe_get_int_list(name, 'filterSize')
dic['filters'] = mcp.safe_get_int_list(name, 'filters')
dic['groups'] = mcp.safe_get_int_list(name, 'groups', default=[1]*len(dic['inputs']))
dic['randSparse'] = mcp.safe_get_bool_list(name, 'randSparse', default=[False]*len(dic['inputs']))
dic['initW'] = mcp.safe_get_float_list(name, 'initW')
dic['initCFunc'] = mcp.safe_get(name, 'initCFunc', default='')
self.verify_num_params(['channels', 'padding', 'stride', 'filterSize', \
'filters', 'groups', 'randSparse', 'initW'])
self.verify_num_range(dic['stride'], 'stride', 1, None)
self.verify_num_range(dic['filterSize'],'filterSize', 1, None)
self.verify_num_range(dic['padding'], 'padding', 0, None)
self.verify_num_range(dic['channels'], 'channels', 1, None)
self.verify_num_range(dic['groups'], 'groups', 1, None)
# Computed values
dic['imgPixels'] = [numInputs/channels for numInputs,channels in zip(dic['numInputs'], dic['channels'])]
dic['imgSize'] = [int(n.sqrt(imgPixels)) for imgPixels in dic['imgPixels']]
self.verify_num_range(dic['imgSize'], 'imgSize', 1, None)
dic['filters'] = [filters*groups for filters,groups in zip(dic['filters'], dic['groups'])]
dic['filterPixels'] = [filterSize**2 for filterSize in dic['filterSize']]
dic['modulesX'] = [1 + int(ceil((2 * padding + imgSize - filterSize) / float(stride))) for padding,imgSize,filterSize,stride in zip(dic['padding'], dic['imgSize'], dic['filterSize'], dic['stride'])]
dic['filterChannels'] = [channels/groups for channels,groups in zip(dic['channels'], dic['groups'])]
if max(dic['randSparse']): # When randSparse is turned on for any input, filterChannels must be given for all of them
dic['filterChannels'] = mcp.safe_get_int_list(name, 'filterChannels', default=dic['filterChannels'])
self.verify_num_params(['filterChannels'])
if len(set(dic['modulesX'])) != 1 or len(set(dic['filters'])) != 1:
raise LayerParsingError("Layer '%s': all inputs must produce equally-dimensioned output. Dimensions are: %s." % (name, ", ".join("%dx%dx%d" % (filters, modulesX, modulesX) for filters,modulesX in zip(dic['filters'], dic['modulesX']))))
dic['modulesX'] = dic['modulesX'][0]
dic['modules'] = dic['modulesX']**2
dic['filters'] = dic['filters'][0]
dic['outputs'] = dic['modules'] * dic['filters']
dic['filterConns'] = [[]] * len(dic['inputs'])
for i in xrange(len(dic['inputs'])):
if dic['numInputs'][i] % dic['imgPixels'][i] != 0 or dic['imgSize'][i] * dic['imgSize'][i] != dic['imgPixels'][i]:
raise LayerParsingError("Layer '%s[%d]': has %-d dimensional input, not interpretable as square %d-channel images" % (name, i, dic['numInputs'][i], dic['channels'][i]))
if dic['channels'][i] > 3 and dic['channels'][i] % 4 != 0:
raise LayerParsingError("Layer '%s[%d]': number of channels must be smaller than 4 or divisible by 4" % (name, i))
if dic['filterSize'][i] > 2 * dic['padding'][i] + dic['imgSize'][i]:
raise LayerParsingError("Layer '%s[%d]': filter size (%d) greater than image size + 2 * padding (%d)" % (name, i, dic['filterSize'][i], 2 * dic['padding'][i] + dic['imgSize'][i]))
if dic['randSparse'][i]: # Random sparse connectivity requires some extra checks
if dic['groups'][i] == 1:
raise LayerParsingError("Layer '%s[%d]': number of groups must be greater than 1 when using random sparse connectivity" % (name, i))
self.verify_divisible(dic['channels'][i], dic['filterChannels'][i], 'channels', 'filterChannels', input_idx=i)
self.verify_divisible(dic['filterChannels'][i], 4, 'filterChannels', input_idx=i)
self.verify_divisible( dic['groups'][i]*dic['filterChannels'][i], dic['channels'][i], 'groups * filterChannels', 'channels', input_idx=i)
dic['filterConns'][i] = self.gen_rand_conns(dic['groups'][i], dic['channels'][i], dic['filterChannels'][i], i)
else:
if dic['groups'][i] > 1:
self.verify_divisible(dic['channels'][i], 4*dic['groups'][i], 'channels', '4 * groups', input_idx=i)
self.verify_divisible(dic['channels'][i], dic['groups'][i], 'channels', 'groups', input_idx=i)
self.verify_divisible(dic['filters'], 16*dic['groups'][i], 'filters * groups', input_idx=i)
dic['padding'][i] = -dic['padding'][i]
dic['overSample'] = [groups*filterChannels/channels for groups,filterChannels,channels in zip(dic['groups'], dic['filterChannels'], dic['channels'])]
return dic
class ConvLayerParser(LocalLayerParser):
def __init__(self):
LocalLayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model)
dic['partialSum'] = mcp.safe_get_int(name, 'partialSum')
dic['sharedBiases'] = mcp.safe_get_bool(name, 'sharedBiases', default=True)
if dic['partialSum'] != 0 and dic['modules'] % dic['partialSum'] != 0:
raise LayerParsingError("Layer '%s': convolutional layer produces %dx%d=%d outputs per filter, but given partialSum parameter (%d) does not divide this number" % (name, dic['modulesX'], dic['modulesX'], dic['modules'], dic['partialSum']))
num_biases = dic['filters'] if dic['sharedBiases'] else dic['modules']*dic['filters']
eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)]
self.make_weights(dic['initW'], eltmult(dic['filterPixels'], dic['filterChannels']), [dic['filters']] * len(dic['inputs']), order='C')
self.make_biases(num_biases, 1, order='C')
print "Initialized convolutional layer '%s', producing %dx%d %d-channel output" % (name, dic['modulesX'], dic['modulesX'], dic['filters'])
return dic
class LocalUnsharedLayerParser(LocalLayerParser):
def __init__(self):
LocalLayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model)
eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)]
scmult = lambda x, lst: [x * l for l in lst]
self.make_weights(dic['initW'], scmult(dic['modules'], eltmult(dic['filterPixels'], dic['filterChannels'])), [dic['filters']] * len(dic['inputs']), order='C')
self.make_biases(dic['modules'] * dic['filters'], 1, order='C')
print "Initialized locally-connected layer '%s', producing %dx%d %d-channel output" % (name, dic['modulesX'], dic['modulesX'], dic['filters'])
return dic
class DataLayerParser(LayerParser):
def __init__(self):
LayerParser.__init__(self)
def parse(self, name, mcp, prev_layers, model):
dic = LayerParser.parse(self, name, mcp, prev_layers, model)
dic['dataIdx'] = mcp.safe_get_int(name, 'dataIdx')
dic['outputs'] = model.train_data_provider.get_data_dims(idx=dic['dataIdx'])
print "Initialized data layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class SoftmaxLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['outputs'] = prev_layers[dic['inputs'][0]]['outputs']
print "Initialized softmax layer '%s', producing %d outputs" % (name, dic['outputs'])
return dic
class PoolLayerParser(LayerWithInputParser):
def __init__(self):
LayerWithInputParser.__init__(self, num_inputs=1)
def parse(self, name, mcp, prev_layers, model):
dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model)
dic['channels'] = mcp.safe_get_int(name, 'channels')
dic['sizeX'] = mcp.safe_get_int(name, 'sizeX')
dic['start'] = mcp.safe_get_int(name, 'start', default=0)
dic['stride'] = mcp.safe_get_int(name, 'stride')
dic['outputsX'] = mcp.safe_get_int(name, 'outputsX', default=0)
dic['pool'] = mcp.safe_get(name, 'pool')
# Avg pooler does not use its acts or inputs
dic['usesActs'] = 'pool' != 'avg'