-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrive.py
54 lines (44 loc) · 1.31 KB
/
drive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import eventlet.wsgi
import socketio
import eventlet
import numpy as np
from flask import Flask
from keras.models import load_model
import base64
from io import BytesIO
from PIL import Image
import cv2
sio = socketio.Server()
app = Flask(__name__)
speed_limit = 5
def image_preprocess(img):
img = img[60:135,:,:]
img = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
img = cv2.GaussianBlur(img, (3,3), 0)
img = cv2.resize(img, (200,66))
img = img/255
return img
@sio.on('connect')
def connect(sid,environ):
print('connected')
send_control(0,0)
def send_control(steering_angle,throttle):
sio.emit('steer',data={
'steering_angle':steering_angle.__str__(),
'throttle':throttle.__str__()
})
@sio.on('telemetry')
def telemetry(sid,data):
speed = float(data['speed'])
image = Image.open(BytesIO(base64.b64decode(data['image'])))
image = np.asarray(image)
image = image_preprocess(image)
image = np.array([image])
steering_angle = float(model.predict(image))
throttle = 1.0 - speed/speed_limit
print('{} {} {}'.format(steering_angle,throttle,speed))
send_control(steering_angle,throttle)
if __name__=='__main__':
model= load_model('model/model.h5')
app = socketio.Middleware(sio,app)
eventlet.wsgi.server(eventlet.listen(('',4567)),app)