-
Notifications
You must be signed in to change notification settings - Fork 156
/
Copy pathgen_tfrecord.py
80 lines (66 loc) · 2.85 KB
/
gen_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
# -*- coding=utf-8 -*-
import argparse
import os
import numpy as np
import io
from PIL import Image
import config
import tensorflow as tf
from object_detection.utils import dataset_util
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--train_or_test', required=True, help='Generate tfrecord for train or test')
parser.add_argument('--csv_input', required=True, help='Path to the csv input')
parser.add_argument('--img_dir', required=True, help='Path to the image directory')
parser.add_argument('--output_path', required=True, help='Path to output tfrecord')
return parser.parse_args()
def create_tf_example(csv, img_dir):
img_fname = csv[0]
x1, y1, x2, y2 = list(map(int, csv[1:-1]))
cls_idx = int(csv[-1])
cls_text = config.CLASS_NAMES[cls_idx].encode('utf8')
with tf.gfile.GFile(os.path.join(img_dir, img_fname), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
xmin = [x1 / width]
xmax = [x2 / width]
ymin = [y1 / height]
ymax = [y2 / height]
cls_text = [cls_text]
cls_idx = [cls_idx]
filename = img_fname.encode('utf8')
image_format = b'jpg'
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
'image/object/class/text': dataset_util.bytes_list_feature(cls_text),
'image/object/class/label': dataset_util.int64_list_feature(cls_idx),
}))
return tf_example
if __name__ == "__main__":
args = parse_arguments()
train_or_test = args.train_or_test.lower()
writer = tf.python_io.TFRecordWriter(args.output_path)
csvs = np.loadtxt(args.csv_input, dtype=str, delimiter=',')
img_fnames = set()
num_data = 0
for csv in csvs:
img_fname = csv[0]
tf_example = create_tf_example(csv, args.img_dir)
if train_or_test == 'train' or (train_or_test == 'test' and not img_fname in img_fnames):
writer.write(tf_example.SerializeToString())
num_data += 1
img_fnames.add(img_fname)
writer.close()
print('Generated ({} imgs): {}'.format(num_data, args.output_path))