-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdetect_traffic_sign.py
181 lines (152 loc) · 5.73 KB
/
detect_traffic_sign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# The MIT License (MIT)
# Copyright (c) 2016 satojkovic
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import tensorflow as tf
import numpy as np
import model
import argparse
import os
import util
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import cv2
import config
def parse_cmdline():
parser = argparse.ArgumentParser()
parser.add_argument('img_fn', help='image filename')
parser.add_argument(
'--save_img',
action='store_true',
default=False,
help='Use this flag if you want to save result image (default: False)')
return parser.parse_args()
def traffic_sign_recognition(sess, img, obj_proposal, graph_params):
# recognition results
recog_results = {}
recog_results['obj_proposal'] = obj_proposal
# Resize image
if img.shape != model.IMG_SHAPE:
img = cv2.resize(img, (model.IMG_WIDTH, model.IMG_HEIGHT))
# Pre-processing(Hist equalization)
img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
split_img = cv2.split(img)
split_img[0] = cv2.equalizeHist(split_img[0])
eq_img = cv2.merge(split_img)
eq_img = cv2.cvtColor(eq_img, cv2.COLOR_YCrCb2BGR)
# Scaling in [0, 1]
eq_img = (eq_img / 255.).astype(np.float32)
eq_img = np.expand_dims(eq_img, axis=0)
# Traffic sign recognition
pred = sess.run(
[graph_params['pred']],
feed_dict={graph_params['target_image']: eq_img})
recog_results['pred_class'] = np.argmax(pred)
recog_results['pred_prob'] = np.max(pred)
return recog_results
def setup_graph():
graph_params = {}
graph_params['graph'] = tf.Graph()
with graph_params['graph'].as_default():
model_params = model.params()
graph_params['target_image'] = tf.placeholder(
tf.float32,
shape=(1, model.IMG_HEIGHT, model.IMG_WIDTH, model.IMG_CHANNELS))
logits = model.cnn(
graph_params['target_image'], model_params, keep_prob=1.0)
graph_params['pred'] = tf.nn.softmax(logits)
graph_params['saver'] = tf.train.Saver()
return graph_params
def cls2name(cls):
SIGNNAMES_FILE = 'signnames.csv'
signnames_ = np.loadtxt(
os.path.join(config.GTSRB_ROOT_DIR, SIGNNAMES_FILE),
delimiter=',',
dtype=np.str)
# skip first row
signnames = signnames_[1:]
# dictionary that convert class number to sign name
to_name = {s[0]: s[1] for s in signnames}
# convert class name to signname
name = to_name[str(cls)]
return name
def main():
args = parse_cmdline()
img_fn = os.path.abspath(args.img_fn)
save_img = args.save_img
if not os.path.exists(img_fn):
print('Not found: {}'.format(img_fn))
sys.exit(-1)
else:
print('Target image: {}'.format(img_fn))
# Loaa target image
target_image = cv2.imread(img_fn)
# Get object proposals
object_proposals = util.get_object_proposals(target_image)
# Setup computation graph
graph_params = setup_graph()
# Model initialize
sess = tf.Session(graph=graph_params['graph'])
tf.global_variables_initializer()
if os.path.exists('models'):
save_path = os.path.join('models', 'deep_traffic_sign_model')
graph_params['saver'].restore(sess, save_path)
print('Model restored')
else:
print('Initialized')
# traffic sign recognition
results = []
for obj_proposal in object_proposals:
x, y, w, h = obj_proposal
crop_image = target_image[y:y + h, x:x + w]
results.append(
traffic_sign_recognition(sess, crop_image, obj_proposal,
graph_params))
"""
del_idx = []
for i, result in enumerate(results):
if result['pred_class'] == common.CLASS_NAME[-1]:
del_idx.append(i)
results = np.delete(results, del_idx)
"""
# Non-max suppression
nms_results = util.nms(results, pred_prob_th=0.999999, iou_th=0.4)
# Draw rectangles on the target image
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6))
ax.imshow(cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB))
for result in nms_results:
print(result)
(x, y, w, h) = result['obj_proposal']
ax.text(
x,
y,
cls2name(result['pred_class']),
fontsize=13,
bbox=dict(facecolor='red', alpha=0.7))
rect = mpatches.Rectangle(
(x, y), w, h, fill=False, edgecolor='red', linewidth=1)
ax.add_patch(rect)
plt.show()
# save the target image
save_fname = os.path.splitext(os.path.basename(img_fn))[0] + '_result.jpg'
if save_img:
fig.savefig(save_fname, bbox_inches='tight', pad_inches=0.0)
if __name__ == '__main__':
main()