-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
66 lines (50 loc) · 2.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# The MIT License (MIT)
# Copyright (c) 2018 satojkovic
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#!/usr/bin/env python
import numpy as np
import joblib
from config import get_default_cfg
from model import TrafficSignRecognizer
import argparse
def accuracy(predictions, labels):
return (100 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) /
predictions.shape[0])
def load_dataset_and_labels(dataset_fname, train_or_test):
data = joblib.load(dataset_fname)
if train_or_test == 'train':
dataset, labels = data['train_bboxes'], data['train_classIds']
else:
dataset, labels = data['test_bboxes'], data['test_classIds']
return dataset, labels
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', default='train_model_dir',
help='Path to model directory')
args = parser.parse_args()
config = get_default_cfg()
# Load dataset and label
train_dataset, train_labels = load_dataset_and_labels(
config.TRAIN_PKL_FILENAME, 'train')
test_dataset, test_labels = load_dataset_and_labels(
config.TEST_PKL_FILENAME, 'test')
# Create model and train
model = TrafficSignRecognizer(mode='train', model_dir=args.model_dir)
model.train(train_dataset, train_labels, learning_rate=1e-4)
if __name__ == '__main__':
main()