-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaleatoric.py
49 lines (39 loc) · 1.68 KB
/
aleatoric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import neural_net
import torch
from torch import nn
import torch.nn.functional as F
from torch.distributions.multivariate_normal import MultivariateNormal
import numpy as np
def predict(data, net, T=50, class_count=10):
mvn = MultivariateNormal(torch.zeros(class_count), torch.eye(class_count))
mu, log_sigma2 = net(data)
y_hat = torch.zeros_like(mu)
for t in range(T):
y_hat += F.softmax(mu + torch.exp(0.5*log_sigma2)*mvn.sample((len(mu),)), dim=1).detach() / T
return y_hat / T
class Net(nn.Module):
def __init__(self, input_size, output_size, hidden_size, hidden_count):
super(Net, self).__init__()
# self.mu = neural_net.FFLayers(input_size, output_size, hidden_size, hidden_count)
# self.log_sigma2 = neural_net.FFLayers(input_size, output_size, hidden_size, hidden_count)
self.output_size = output_size
self.backbone = neural_net.FFLayers(input_size, output_size*2, hidden_size, hidden_count)
def forward(self, x):
output = self.backbone(x)
return output[:, :self.output_size], output[:, self.output_size:]
# self.mu(x), self.log_sigma2(x)
class Loss(torch.nn.Module):
def __init__(self, class_count=10, T=25):
super(Loss,self).__init__()
self.mvn = MultivariateNormal(torch.zeros(class_count), torch.eye(class_count))
self.T = T
self.class_count = class_count
def forward(self, output, y):
mu, log_sigma2 = output
y_hat = []
for t in range(self.T):
epsilon = self.mvn.sample((len(mu),))
numerator = F.log_softmax(mu + torch.exp(0.5*log_sigma2)*epsilon, dim=1)
y_hat.append( numerator - np.log(self.T))
y_hat = torch.stack(tuple(y_hat))
return F.nll_loss(torch.logsumexp(y_hat, dim=0), y)