-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspot_inference.py
277 lines (215 loc) · 11.1 KB
/
spot_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import math
import numpy as np
import pandas as pd
import torch.nn.parallel
import itertools,operator
# from gsm_lib import opts
from spot_model import SPOT
import spot_lib.spot_dataloader as spot_dataset
from scipy import ndimage
from scipy.special import softmax
import torch.nn.functional as F
from collections import Counter
import cv2
import json
from config.dataset_class import activity_dict
import yaml
from utils.postprocess_utils import multithread_detection , get_infer_dict, load_json
from joblib import Parallel, delayed
from spot_lib.tsne import viusalize
with open("./config/anet.yaml", 'r', encoding='utf-8') as f:
tmp = f.read()
config = yaml.load(tmp, Loader=yaml.FullLoader)
if __name__ == '__main__':
mode = "semi" ## "semi", "semi_ema" ,""
output_path = config['dataset']['testing']['output_path']
# im_fig_path = config['testing']['fig_path']
is_postprocess = True
if not os.path.exists(output_path + "/results"):
os.makedirs(output_path + "/results")
### Load Model ###
model = SPOT()
model = torch.nn.DataParallel(model, device_ids=[0]).cuda()
### Load Checkpoint ###
checkpoint = torch.load(output_path + "/SPOT_best_semi.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
model.eval()
### Load Dataloader ###
test_loader = torch.utils.data.DataLoader(spot_dataset.SPOTDataset(subset="validation", mode='inference'),
batch_size=1, shuffle=False,
num_workers=8, pin_memory=True, drop_last=False)
# im_path = os.path.join(im_fig_path,"SOLO_PIC")
key_list = list(activity_dict.keys())
val_list = list(activity_dict.values())
nms_thres = config['testing']['nms_thresh']
def save_plot(x,save_path):
fig = plt.figure()
ax = plt.axes()
fig = plt.figure()
ax = plt.axes()
plt.grid(False)
plt.plot(x,color='red', linewidth=8);
plt.xlim(0, 100)
plt.ylim(0, 1);
plt.xticks([])
plt.yticks([])
fig = plt.gcf()
fig.set_size_inches(25.5, 2.5)
plt.savefig(save_path)
def post_process_multi(detection_thread,get_infer_dict):
mode="semi"
infer_dict , label_dict = get_infer_dict()
pred_data = pd.read_csv("spot_output_"+mode+".csv")
pred_videos = list(pred_data.video_name.values[:])
cls_data_score, cls_data_cls = {}, {}
best_cls = load_json("spot_best_score.json")
for idx, vid in enumerate(infer_dict.keys()):
if vid in pred_videos:
vid = vid[2:]
cls_data_cls[vid] = best_cls["v_"+vid]["class"]
parallel = Parallel(n_jobs=15, prefer="processes")
detection = parallel(delayed(detection_thread)(vid, video_cls, infer_dict['v_'+vid], label_dict, pred_data,best_cls)
for vid, video_cls in cls_data_cls.items())
detection_dict = {}
[detection_dict.update(d) for d in detection]
output_dict = {"version": "ANET v1.3, SPOT", "results": detection_dict, "external_data": {}}
with open(output_path + '/detection_result_nms{}.json'.format(nms_thres), "w") as out:
json.dump(output_dict, out)
file = "spot_output_"+mode+".csv"
if(os.path.exists(file) and os.path.isfile(file)):
os.remove(file)
print("Inference start")
with torch.no_grad():
vid_count=0
match_count=0
vid_label_dict = {}
results = {}
result_dict = {}
class_thres = config['testing']['cls_thresh']
num_class = config['dataset']['num_classes']
top_k_snip = config['testing']['top_k_snip']
class_snip_thresh = config['testing']['class_thresh']
mask_snip_thresh = config['testing']['mask_thresh']
tscale = config['model']['temporal_scale']
full_label = True
new_props = list()
for idx, input_data, input_data_big, input_data_small,f_mask in test_loader:
video_name = test_loader.dataset.subset_mask_list[idx[0]]
vid_count+=1
input_data = input_data.cuda()
input_data_s = input_data_small.cuda()
input_data_b = input_data_big.cuda()
if not os.path.exists(output_path + "/fig/"+video_name):
os.makedirs(output_path + "/fig/"+video_name)
# forward pass
top_br_pred, bottom_br_pred, feat = model(input_data.cuda())
### global mask prediction ####
props = bottom_br_pred[0].detach().cpu().numpy()
### classifier branch prediction ###
if full_label:
best_cls = load_json("spot_best_score.json")
full_cls = best_cls[video_name]["class"]
full_cls_score = best_cls[video_name]["score"]
soft_cas = torch.softmax(top_br_pred[0],dim=0)
soft_cas_topk,soft_cas_topk_loc = torch.topk(soft_cas[:num_class],2,dim=0)
top_br_np = softmax(top_br_pred[0].detach().cpu().numpy(),axis=0)[:num_class]
label_pred = torch.softmax(torch.mean(top_br_pred[0][:num_class,:],dim=1),axis=0).detach().cpu().numpy()
vid_label_id = np.argmax(label_pred)
vid_label_sc = np.amax(label_pred)
props_mod = props[props>0]
top_br_np = softmax(top_br_pred[0].detach().cpu().numpy(),axis=0)[:num_class]
top_br_mean = np.mean(top_br_np,axis=1)
top_br_mean_max = np.amax(top_br_np,axis=1)
top_br_mean_id = np.argmax(top_br_mean)
soft_cas_np = soft_cas[:num_class].detach().cpu().numpy()
seg_score = np.zeros([tscale])
seg_cls = []
seg_mask = np.zeros([tscale])
### for each snippet, store the max score and class info ####
for j in range(tscale):
seg_score[j] = np.amax(soft_cas_np[:,j])
seg_cls.append(np.argmax(soft_cas_np[:,j]))
# seg_score[seg_score < class_thres] = 0
thres = class_snip_thresh
cas_tuple = []
for k in thres:
filt_seg_score = seg_score > k
integer_map1 = map(int,filt_seg_score)
filt_seg_score_int = list(integer_map1)
filt_seg_score_int = ndimage.binary_fill_holes(filt_seg_score_int).astype(int).tolist()
if 1 in filt_seg_score_int:
start_pt1 = filt_seg_score_int.index(1)
end_pt1 = len(filt_seg_score_int) - 1 - filt_seg_score_int[::-1].index(1)
if end_pt1 - start_pt1 > 1:
scores = np.amax(seg_score[start_pt1:end_pt1])
label = max(set(seg_cls[start_pt1:end_pt1]), key=seg_cls.count)
cas_tuple.append([start_pt1,end_pt1,scores,label])
max_score, score_idx = torch.max(soft_cas[:num_class],0)
soft_cas_np = soft_cas[:num_class].detach().cpu().numpy()
score_map = {}
top_np = top_br_pred[0][:num_class].detach().cpu().numpy()
top_np_max = np.mean(top_np,axis=1)
max_score_np = max_score.detach().cpu().numpy()
score_idx = score_idx.detach().cpu().numpy()
for ids in range(len(score_idx)):
score_map[max_score_np[ids]]= score_idx[ids]
k = top_k_snip ## more fast inference
max_idx = np.argpartition(max_score_np, -k)[-k:]
### indexes of top K scores ###
top_k_idx = max_idx[np.argsort(max_score_np[max_idx])][::-1].tolist()
for locs in top_k_idx:
seq = props[locs,:]
thres = mask_snip_thresh
for j in thres:
filtered_seq = seq > j
integer_map = map(int,filtered_seq)
filtered_seq_int = list(integer_map)
filtered_seq_int2 = ndimage.binary_fill_holes(filtered_seq_int).astype(int).tolist()
if 1 in filtered_seq_int:
#### getting start and end point of mask from mask branch ####
start_pt1 = filtered_seq_int2.index(1)
end_pt1 = len(filtered_seq_int2) - 1 - filtered_seq_int2[::-1].index(1)
r = max((list(y) for (x,y) in itertools.groupby((enumerate(filtered_seq_int)),operator.itemgetter(1)) if x == 1), key=len)
start_pt = r[0][0]
end_pt = r[-1][0]
if (end_pt - start_pt)/tscale > 0.02 :
#### get (start,end,cls_score,reg_score,label) for each top-k snip ####
score_ = max_score_np[locs]
cls_score = score_
lbl_id = score_map[score_]
reg_score = np.mean(seq[start_pt+1:end_pt-1])
label = key_list[val_list.index(lbl_id)]
vid_label = key_list[val_list.index(vid_label_id)]
score_shift = np.amax(soft_cas_np[vid_label_id,start_pt:end_pt])
prop_start = start_pt1/tscale
prop_end = end_pt1/tscale
if full_label:
new_props.append([video_name, prop_start , prop_end , score_shift*reg_score, full_cls_score,full_cls])
else:
new_props.append([video_name, prop_start , prop_end , score_shift*reg_score, score_shift*cls_score,vid_label])
for m in range(len(cas_tuple)):
start_m = cas_tuple[m][0]
end_m = cas_tuple[m][1]
score_m = cas_tuple[m][2]
reg_score = np.amax(seq[start_m:end_m])
prop_start = start_m/tscale
prop_end = end_m/tscale
cls_score = score_m
if full_label:
new_props.append([video_name, prop_start,prop_end,reg_score,full_cls_score,full_cls])
else:
new_props.append([video_name, prop_start,prop_end,reg_score,cls_score,vid_label])
### filter duplicate proposals --> Less Time for Post-Processing #####
new_props = np.stack(new_props)
b_set = set(map(tuple,new_props))
result = map(list,b_set)
### save the proposals in a csv file ###
col_name = ["video_name","xmin", "xmax", "clr_score", "reg_score","label"]
new_df = pd.DataFrame(result, columns=col_name)
new_df.to_csv("spot_output_"+mode+".csv", index=False)
print("Inference finished")
###### Post-Process #####
print("Start Post-Processing")
post_process_multi(multithread_detection,get_infer_dict)
print("End Post-Processing")