-
Notifications
You must be signed in to change notification settings - Fork 2
/
pardijkstra.go
192 lines (174 loc) · 6.12 KB
/
pardijkstra.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
package graph
import (
"fmt"
"runtime"
"sync/atomic"
"github.com/egonelbre/async"
"github.com/sbromberger/bitvec"
"github.com/shawnsmithdev/zermelo/zuint32"
)
// processDijkstraLevel uses Frontiers to dequeue work from currLevel in ReadBlockSize increments.
func processDijkstraLevel(g Graph, currLevel, nextLevel *Frontier, visited *bitvec.ABitVec, dists []float32, parents []uint32, pathcounts []uint32) {
writeLow, writeHigh := u0, u0
for {
readLow, readHigh := currLevel.NextRead() // if currLevel still has vertices to process, get the indices of a ReadBlockSize block of them
if readLow >= readHigh { // otherwise exit
break
}
for _, u := range currLevel.Data[readLow:readHigh] { // get and loop through a slice of ReadBlockSize vertices from currLevel
if u == EmptySentinel { // if we hit a sentinel within the block, skip it
continue
}
alt := min(maxDist, dists[u]+1)
vs := g.OutNeighbors(u) // get the outNeighbors of the vertex under inspection
// i := 0
for _, v := range vs {
// for ; i < len(vs)-3; i += 4 { // unroll loop for visited
// v1, v2, v3, v4 := vs[i], vs[i+1], vs[i+2], vs[i+3]
// x1, x2, x3, x4 := visited.GetBuckets4(v1, v2, v3, v4)
// if visited.TrySetWith(x1, v1) { // if not visited, add to the list of vertices for nextLevel
// nextLevel.Write(&writeLow, &writeHigh, v1)
// dists[v1] = alt
// parents[v1] = u
// pathcounts[v1] += pathcounts[u]
// } else {
// if alt < dists[v1] {
// dists[v1] = alt
// parents[v1] = u
// pathcounts[v1] = 0
// }
// if alt == dists[v1] {
// pathcounts[v1] += pathcounts[u]
// }
// }
// if visited.TrySetWith(x2, v2) {
// nextLevel.Write(&writeLow, &writeHigh, v2)
// dists[v2] = alt
// dists[v2] = alt
// parents[v2] = u
// pathcounts[v2] += pathcounts[u]
// } else {
// if alt < dists[v2] {
// dists[v2] = alt
// parents[v2] = u
// pathcounts[v2] = 0
// }
// if alt == dists[v2] {
// pathcounts[v2] += pathcounts[u]
// }
// }
// if visited.TrySetWith(x3, v3) {
// nextLevel.Write(&writeLow, &writeHigh, v3)
// dists[v3] = alt
// dists[v3] = alt
// parents[v3] = u
// pathcounts[v3] += pathcounts[u]
// } else {
// if alt < dists[v3] {
// dists[v3] = alt
// parents[v3] = u
// pathcounts[v3] = 0
// }
// if alt == dists[v3] {
// pathcounts[v3] += pathcounts[u]
// }
// }
// if visited.TrySetWith(x4, v4) {
// nextLevel.Write(&writeLow, &writeHigh, v4)
// dists[v4] = alt
// dists[v4] = alt
// parents[v4] = u
// pathcounts[v4] += pathcounts[u]
// } else {
// if alt < dists[v4] {
// dists[v4] = alt
// parents[v4] = u
// pathcounts[v4] = 0
// }
// if alt == dists[v4] {
// pathcounts[v4] += pathcounts[u]
// }
// }
// }
// for _, v := range vs[i:] { // process any remaining (< 4) neighbors for this vertex
if visited.TrySet(v) {
nextLevel.Write(&writeLow, &writeHigh, v)
dists[v] = alt
parents[v] = u
atomic.AddUint32(&pathcounts[v], pathcounts[u])
} else {
if alt < dists[v] {
dists[v] = alt
parents[v] = u
pathcounts[v] = 0
}
if alt == dists[v] {
atomic.AddUint32(&pathcounts[v], pathcounts[u])
}
}
}
}
}
for i := writeLow; i < writeHigh; i++ {
nextLevel.Data[i] = EmptySentinel // ensure the rest of the nextLevel block is "empty" using the sentinel
}
}
// ParallelDijkstra computes a vector of levels from src in parallel.
func ParallelDijkstra(g Graph, src uint32, procs int) DijkstraState {
N := g.NumVertices()
vertLevel := make([]uint32, N)
visited := bitvec.NewABitVec(N)
maxSize := N + MaxBlockSize*uint32(procs)
currLevel := &Frontier{make([]uint32, 0, maxSize), 0}
nextLevel := &Frontier{make([]uint32, maxSize), 0}
currentLevel := uint32(2)
parents := make([]uint32, N)
pathcounts := make([]uint32, N)
dists := make([]float32, N)
for i := range dists {
dists[i] = maxDist
}
vertLevel[src] = 0
dists[src] = 0
parents[src] = src
pathcounts[src] = 1
visited.TrySet(src)
currLevel.Data = append(currLevel.Data, src)
wait := make(chan struct{})
for len(currLevel.Data) > 0 { // while we have vertices in currentLevel
async.Spawn(procs, func(i int) { // spawn `procs` goroutines to process vertices in this level,
runtime.LockOSThread() // using currLevel as the work queue. Make sure only one goroutine per thread.
processDijkstraLevel(g, currLevel, nextLevel, &visited, dists, parents, pathcounts)
}, func() { wait <- struct{}{} })
<-wait // this is equivalent to using a WaitGroup but uses a single channel message instead.
nextLevel.Data = nextLevel.Data[:nextLevel.Head] // "truncate" nextLevel.Data to just the valid data...
// ... we need to do this because Frontier.ReadNext uses `len`.
sentinelCount := u0
// now sort nextLevel by block. After this, all data within a given block will be sorted. This ensures that
// "most" data are ordered, which preserves some linearity in cache access, but this might not be significant.
// More testing is needed.
async.BlockIter(int(nextLevel.Head), procs, func(low, high int) {
zuint32.SortBYOB(nextLevel.Data[low:high], currLevel.Data[low:high])
for index, v := range nextLevel.Data[low:high] {
if v == EmptySentinel {
atomic.AddUint32(&sentinelCount, uint32(high-low-index))
break
}
vertLevel[v] = currentLevel
}
})
fmt.Printf("completed level %d, size = %d\n", currentLevel-1, len(nextLevel.Data)-int(sentinelCount))
currentLevel++
currLevel, nextLevel = nextLevel, currLevel
currLevel.Head = 0 // start reading from 0
// reset buffer for next level
nextLevel.Data = nextLevel.Data[:maxSize:maxSize] // resize the buffer to `maxSize` elements. We don't care what's in it, because...
nextLevel.Head = 0 // ... we start writing to index 0.
}
ds := DijkstraState{
Parents: parents,
Dists: dists,
Pathcounts: pathcounts,
}
return ds
}